Status of IHEP Project for Belle II DAQ Upgrade

Zhen-An LIU, Jingzhou ZHAO, Jia TAO, Xiaolong WANG
representing the IHEP/Fudan Team
2019 Belle II Trigger and DAQ workshop
Aug. 28 2019
Outline

• IHEP Solution for Belle II DAQ upgrade
• CPPF introduce and upgrade
• Demo system at IHEP
• Progress/Status
• Summary
IHEP Solution for Belle II DAQ upgrade

• Upgrading is straight forward:
 • Replacing HSLB/COPPER with CMS/CPPF designed by IHEP
 • Network link: GbE/10GbE
More on IHEP Solution for Belle II DAQ upgrade

- Replacing HSLB/COPPER board with CPPF/CMS board/uTCA crate
- Merging/Concentration is based on 4 ports
- One CPPF board replaces 4-6 COPPERs(with HSLBs), 24 input links (depends on system bandwidth)
- One CPPF outputs one or more 1/10GbE to Event builder
- One CPPF with 1/2 TTD interface
- One CPPF with one Slow Control network
- No change to other DAQ parts
CPPF Introduction

• Data throughput
 • 3 MiniPoD, support 360Gb/s INPUT,
 • 2 MiniPoD, support 240Gb/s OUTPUT

• XC7VX415T-2 (Virtex-7)
 • Core FPGA for data processing,
 • Pin compatible with XC7VX690T,
 • 48 channel GTH Transceivers,
 • Support up to 13.1Gbps per channel.

• DDR3 2Gb (pin compatible with 4Gb)

• XC7K70T-2 (Kintex-7)
 • Control FPGA,
 • Configure and Control CPPF.

• Flash 1GB
 • Configuration file store

• AT32UC3A1512 (Atmel)
 • MMC, Module Management Controller.
CPPF upgrade for Bellell

• XC7VX415T upgrade to XC7V690T
• Added one TX MiniPoD (12 TX channel),
• Total: 36 channel input, 36 channel output,
• Added 156.25MHz OSC for 10GbE,
• Added TWO FTSW RJ45 Ports,
• CPPF_V3_4 is ready and under testing.
CPPF Clock Distribution

Old version for CMS

New version for Belle II

2019-8-27

2019 Belle II Trigger and DAQ workshop
Demo system Setup at IHEP

- Photo of Full Demo System

FTSW

use HSLB as data source

CPPF/Readout

Host PC

Connect to PC's Ethernet card

FTSW

Optical fiber to Ethernet card on PC

JTAG cable

RJ45 connector and CAT 7 to FTSW

Optical fiber to data source

Network power
Demo system Based on 10GbE

- **HSLB Clock/Trigger Gen**
 - --Generate 125MHz clock
 - --Generate trigger signal
 - Trigger rate is controlled by PC;
 - Trigger signal can be masked by feedback BUSY signal;
 - --send clock and trigger to fan-out board

- **Fan-out board**
 - Fan out 125MHz clock and trigger signal to Data source boards,

- **Data source board**
 - --use hslb as data source (*belle2link-0.19*)
 - --generate dummy data and provide some register for slow control test

- **Readout board**
 - use CPPF as readout board
 - implement belle2link(data merge and slow control) and some COPPER and ROPC function on it
 - output data to PC and receive command from PC via Ethernet.

- **host pc**
 - --receive data from CPPF through 10G Ethernet
 - --send slow control command to CPPF via SiTCP

- Use an short-time(10min) evaluation version 10GbE IP core(from a company), implemented on CPPF
Firmware structure

Data merger based on 10GbE
COPPER Data format based on 10 GbE (4 links)

- 10GbE IP core data width 64 bits;
- Old COPPER data format header:
 - 13*32bits

Modification on COPPER Data format:
- Inserting a 32bit word called Reserve after channel D data length,
- make the header into 14*32bit,
- Inserting a 32bit word called Reserve in trail,
- Make the trail into 4*32bit
Merged data format (4 links)

First 4 events shows below follows COPPER format, event number is incremented

Event No.0x00 Data

Event No.0x01 Data

Event No.0x02 Data

Event No.0x03 Data
COPPER-like Data format based on 10 GbE(16 links)

- For 16 links
 - Similar to 4 link COPPER data format
 - Header add 12 more 32bit word to represent the data length of added links and total data length is the sum of 16 links’ data length
 - 4 links -> 16 links data in one event
 - Data format for 16 or 24 links should be further discussed with Yamada-san.
COPPER-like Data format based on 10 GbE (16 links)

- PC received data (1st event) is shown as right,
- COPPER event number and link event number are checked.
- Header of COPPER and link header and footer are checked.
- Event number are checked whether they are increased one by one.
- About 100 thousands events are received and checked, and data are correct.

Header:
- PC received data (1st event) is shown as right,
- COPPER event number and link event number are checked.
- Header of COPPER and link header and footer are checked.
- Event number are checked whether they are increased one by one.
- About 100 thousands events are received and checked, and data are correct.
Firmware structure - Slow control
Firmware structure: Slow Control

Interface between localbus and SiTCP

<table>
<thead>
<tr>
<th>Signal name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBCT_ACT</td>
<td>O</td>
<td>Indicates the bus operating.</td>
</tr>
<tr>
<td>RBCT_ADDR[31:0]</td>
<td>O</td>
<td>Address in access</td>
</tr>
<tr>
<td>RBCT_WE</td>
<td>O</td>
<td>Write enable</td>
</tr>
<tr>
<td>RBCT_WD[7:0]</td>
<td>O</td>
<td>Write data</td>
</tr>
<tr>
<td>RBCT_RE</td>
<td>O</td>
<td>Read enable</td>
</tr>
<tr>
<td>RBCT_RD[7:0]</td>
<td>I</td>
<td>Read data</td>
</tr>
<tr>
<td>RBCT_ACK</td>
<td>I</td>
<td>Access response</td>
</tr>
</tbody>
</table>

RBCP signal description

UDP RBCP packet format

<table>
<thead>
<tr>
<th>CMD bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Access</td>
<td>Bus Access</td>
</tr>
<tr>
<td>2</td>
<td>R/W</td>
<td>0: Write, 1: Read</td>
</tr>
<tr>
<td>1</td>
<td>Reserve</td>
<td>Always 0</td>
</tr>
<tr>
<td>0</td>
<td>Reserve</td>
<td>Always 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLAG bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>REQ/ACK</td>
<td>0: Request, 1: Acknowledge</td>
</tr>
<tr>
<td>2</td>
<td>Reserve</td>
<td>Always 0</td>
</tr>
<tr>
<td>1</td>
<td>Reserve</td>
<td>Always 0</td>
</tr>
<tr>
<td>0</td>
<td>Error</td>
<td>0: Normal, 1: Bus Error</td>
</tr>
</tbody>
</table>

Interface between localbus and SiTCP (with RBCP)
Slow control test result

Slow control

Main functions are realized and verified

-- 8 bit register read and write — *A7D8*

-- 32 bit register read and write — *A16D32*

-- Stream write — *Stream*

A7D8: Delay parameter was written and read back correctly

A16D32 example

Test slow control, A7D8 and A16D32, up to 10000 times w/r, without error
Resource utilization in CPPF

- 16 links version resource utilization in CPPF.
- BRAM is used 57% in old version of CPPF.
- And BRAM 34% used in new version of CPPF.
- New version of CPPF based on xc7vx690t can provide enough BRAM for Data buffering.
Status of the IHEP Demo system

Based on 10GbE(4 channels)
- Functions are based on 4 inputs implementation of COPPER
 Done
- Data output to Event builder/readout PC via Optical Switch
 Done
- Four Slow control links in one CPPF
 Done (simple CDC parameters)
- TTD interface, BUSY handshake with FTSW
 Done based on SiTCP, For 10 GbE Waiting for new version of CPPF
- Data check function
 Done
 - checking event number
 - CRC and others not yet

Based on 10GbE(16 channels)
- Functions are based on 4 inputs implementation of COPPER
 Done
- Data output to Event builder/readout PC via Optical Switch
 Done
- 16 Slow control links in one CPPF
 Done (simple CDC parameters)
- TTD interface, BUSY handshake with FTSW
 Done based on SiTCP, For 10 GbE Waiting for new version of CPPF
- Data check function
 Done
 - checking event number
 - CRC and others not yet
Manpower and tasks

• China side
 • Zhen-An LIU: Overall.
 • Jingzhou ZHAO/Jia TAO: Main person for the implementation.
 • Wenxuan GONG/Na WANG: Hardware modification and production.
 • Hanjun KOU: readout via 1G/10G Ethernet implementation with SITCP, B2TT implementation.
 • Pengcheng CAO: Slow Control and control firmware.
 • Jianing SONG: Hardware testing.
 • Two students from Fudan Uni. are also possible

• KEK side
 • Discussion: Yamada, Itoh, Nakao, Qidong
 • Firmware improvement later
Summary

• CPPF is the main board in IHEP Demo system for DAQ upgrade.
• New version of CPPF for Belle II is ready and under testing.
• Demo system at IHEP achieved success for 16 channels.
 • Based on 10GbE
• IHEP proposal could meet all requirement
 • Open, scalable, upgradable, re-configurable hardware platform
 • Suitable for future FEE and DAQ networking upgrade also
• Join test in KEK could start to plan.