

DQM Operation in Phase 3

R.Itoh, KEK

1. Introduction

- Real time monitoring of the data quality is essential for the
 stable data taking.

- The monitoring consists of
 * Detector performance monitor (i.e. hit-map, gain variation, etc.)
 * Physics performance monitor (i.e. momentum resolution, etc.)
 * Trigger performance (Various dist. used in L1/HLT selection)

- In Belle II DAQ, such monitoring is performed on HLT and
 Express Reco.

- The real time monitoring is implemented by the periodical
 “spy” of 1D and 2D histograms from live basf2 processes.

- At run ends, the accumulated histograms and N-tuples(TTrees)
 are supposed to be left on the storage for quick analysis
 and calibration.

Data Monitoring and Database Access

HLT

Prompt Reco?

F
or

m
a

tt
in

g

T
ra

ck
(S

V
D

+
C

D
C

)

E
ve

nt
 B

ui
ld

er

C
al

o.
C

lu
st

.

P
ID

P
hy

si
cs

 S
ki

m

T
ra

ck
(S

V
D

+
C

D
C

)

C
al

o.
C

lu
st

.

P
ID

V
er

te
xi

ng
(P

X
D

+
S

V
D

+
C

D
C

)

Onsen

D
S

T
 p

ro
d.

Online
Storage

Le
ve

l 4
 S

el
.

R
oI

-f
in

de
r

V
e

rt
ex

in
g

(P
X

D
+

S
V

D
+

C
D

C
)

Bhabha
+mm
scaled
skim

PXD

Event
Builder

2

P
X

D
/V

T
X

D
Q

M

Express Reco

DQM
Browser/
Storage

ad
di

tio
na

l
pr

oc
.

Constants
Making

Run-by-run
Calibration constants in DB

“Frozen”
Calibration constants

for monitor/align

 DST

updated exp by exp

rawdata
histo

main data flow

histograms
scaled skim

calibration constants

Rec
node

IP info to accel.

What is DQM?

DQM : Data Quality Monitoring
 * Viewpoint from DAQ

- The basic functionality of DQM is to accumulate histograms
 on various parameters obtained in the real time HLT and
 ExpressReco processing, and transfer them lively to the
 browser node to be monitored by shifters.

- At each run end, the histograms are stored in a file for the
 offline usage / comparison.

Technical challenge in DQM

- On HLT/Expressreco, histograms are accumulated on
 many cores (1600 cores for HLT, 160 cores for ExpReco)
 in the parallel processing.

- The histograms have to be collected from these cores and
 merged lively and periodically.

- The histograms are collected in three steps.
 1) On each HLT worker node, a basf2 is running in parallel
 processing mode. The histograms are collected by the
 combination of “DQMHistoManager” module and “hserver”.

 2) The histograms merged on a hserver on each worker
 are transferred to the control node of the HLT unit by “hrelay”
 and then merged again by hserver.

 3) The histograms from multiple HLT units are merged on
 the DQM server node by using hrelay-hserver.

Step 1) Histogram collection on a worker node

DQM
HistoManager Modules

input
module

DQM
HistoManager Modules

DQM
HistoManager Modules

output
module

basf2

hserver

hrelay

HLT Worker Node
TMemFile

DqmHistoManager module

- The module is compatible with HistoManager module.

- The definition of all ROOT histograms is centralized
 to this module and the accumulated contents are dumped to
 network socket from each event process in addition to files.

- The dump is done at every preset event number interval.

- Only 1D/2D histograms are transferred to hserver at the dump
 while all histograms/tuples/trees are dumped in files.

- At the run end, the histograms/ tuples/trees files at last dump are
 collected and merged to a single file/ HLT unit.
 -> to be used for the constants-making.

Histogram transport with TMemFile

Shared Memory

hserver

TMemFile
(persistent)

TMemFile
(periodically

updated)

hrelay

basf2
basf2

Histogram transport over socket connection

Histogram
transport
over
shared
memory

- Former TMapFile was replaced with this new method.

Step 2 and 3) Collection of histograms via network

- Implemented by the repeated use of hserver and hrelay.

input
mod.

Dqm
Histo

Manager
mod1 mod2 modn

x 20 cores

hserver

basf2/core

TMemFile
hrelay

hlt control node
(hltctl)

hserver
TMapFile
hrelay

histogram collection from 20 servers

dqmsrv1
(DQM master PC)

hserver
TMemFile

DQM Browser

socket connection

DQMnet
ExpressReco

10-20 HLT units

Histogram file writing at run end

- At each run end, the DQM histograms are supposed to be collected
 and stored in a file.

- In the previous implementation, the collection is done separately
 from the live DQM collection to manage not only 1D/2D histograms
 but also TTrees/TNTuples.

- The collection is done in 3 steps.

- When a run is stopped,
 1) basf2 is terminated by sending signal and the histograms
 accumulated in each event process are written to files
 corresponding to the processes in DqmHistoManager::endrun().
 2) The histogram files are collected and added in one file per
 worker node in DqmHistoManager::terminate().
 3) The control nodes collects the files on worker nodes and
 add them into a single file.

worker node
DQMHistoManager
::endrun()

DQMHistoManager
::terminate()

basf2

dqm
server

up to 20 workers

HLT control node

DQM histogram collection
at run end

- This mechanism includes three file writing. The number of
 DQM histograms in phase 3 was around 7500 and it took
 a long time to go through all 3 steps.

 -> Up to 5 minutes to stop a run!

- Several reasons.
 1) The files were first placed in NFS filesystem shared by
 all worker nodes on a GbE network.
 -> Changed to local file system, but still ~3min or so.

 2) The number of histograms was reduced to 1/3. But still
 took a few minutes to stop.

- Finally gave up to use this mechanism to leave DQM
 histograms in a file.

- Instead, the histograms collected by live histogram transport
 are stored in a file at run end. “DQMMASTER”

- Final solution:
 * To give up the histogram collection at each run end.
 * Instead, store the live histograms already transferred to the main
 node at run end.

 * For the purpose, a new NSM node called “DQMMASTER” is
 installed.
 * It receives the STOP signal from run control master and dump
 histograms on TMemFile into files.

 * It was implemented during last acc. maintenance day and
 now being operated.

 -> The stopping time reduced to ~30 sec.

- Number of histograms has been reduced down to 2800 (thanks
 to the effort by TRG group), and the time for HLT stop was reduced
 to 2min. or so. But still long.

hserver
TMapFile
hrelay

hserver
TMapFile
hrelay

hserver
TMapFile
hrelay

hserver
TMemFile

DQMnet

HLT01-05

hserver
TMemFile

hserver
TMapFile
hrelay

ExpReco

DQMMASTER

run control

STOP

Live periodical histogram transport

Dump histograms on shared memory
in files at run stopnewly implemented

done in
parallel

- The histogram files are copied to
 qasrv01:/data1/dqm/dqmsrv1/e0008/dqmhisto/
 hltdqm_e0008rxxxxxx.root, and
 erecodqm_e0008rxxxxxx.root.

- The directory structure of the file is different from previous one.
 * No subdirectories corresponding to subsystem.
 * Instead, the subsystem labels are attached to histogram titles.

- The histogram files are copied to kekcc by Boqun
 kekcc:/group/belle2/phase3/dqm/dqmsrv1/e0008/dqmhisto/.

- One Note:

 * In this implementation, we cannot guarantee that “all the
 events” are in the stored DQM files. Only up to the events
 where the histograms are transferred to the main node.
 (Events in a last few minutes before STOP are not
 accumulated in histograms)
 * Should be OK, since it is a kind of “snapshot” of online DQM.
 * For the detailed study, you can check full events in offline.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

