TTP Miscellaneous

Mikihiko Nakao (KEK)
mikihiko.nakao@kek.jp

2019.8.27
Trigger/DAQ workshop at Yonsei
Overflow items

- Run control related things
- Software management
- Data format
- TTD for DAQ-upgrade
PAUSE handling

- CDC HV trip → PAUSE (only) TTD
 - RC should be updated to send PAUSE to TTD (then RESUME)
 - pocket_ttd is able to PAUSE and RESUME
 - ttctrl is not able to handle yet

- No change in run condition expected
 - No change in run number, subrun number

- subrun number?
 - PAUSE request may have an option to increment subrun number
 - Otherwise currently subrun number can be updated only by regft
Error handling

- **Error outside of TTD**
 - TTD should receive STOP request
 - Maybe with a different option from normal STOP by shifter

- **Error found by TTD: checking one error bit**
 - if the bit is high, one can run “ttaddr” function for more detailed report

- **Busy: checking the staying busy bit**
 - if the bit is high for long time, pocket_ttd can locally pause the trigger, then run “ttaddr” function to identify the busy source

- **pocket_ttd**
 - Running external script for monitor right now
 - Should be done by pocket_ttd, and all other external scripts should be avoided
Run end report

- TTD should generate run-end report
 - A natural extension of the error reporting
 - Should also do at normal run stop
TTD software structure

- **ttctrlld** — daq_slc style program to talk to RC
- **pocket_ttd** — main readout program originally for beam-test with PocketDAQ setup
- **ftprogs** — ftsw library and command line programs
- **statft** — one of ftprogs, widely used to monitor FTSW
- **ttaddr** — ttd connection setting and status collection
- **(ttinjv** — process to receive injection veto from GDL)
- **scripts** — jtag programming, monitoring FTSW, ...
- no GUI for TTD ...
git repository

- **daq_slc repo**
 - ttctrld is the only program in daq_slc for TTD
 - ttctrld does FTSW register access, which should be avoided
 - ttctrld was out of daq_slc sync till July
 - now all changes are committed and pushed to git

- **ttd repo**
 - Rest of the programs are in ttd repo
 (recently separated from ftsw repo)
 - Currently writeable only by me
 - pocket_ttd is in ttd11:~b2daq/ttd/, rest are in /usr/local/bin
 - Some of the scripts are also added to git, some are not yet

- **daq_restart repo**
 - start-ttd11.sh to start missing ttd11 process
run-time environment

- **account on ttd11**
 - NSM2 processes are running under b2daq account
 - Other programs can be run by anybody on ttd11 *(dangerous)*

- **daq_slc**
 - cvmfs is mounted on ttd11, now run time is using cvmfs
 - a bit of struggle: cvmfs needs a few run-time writeable directories

- **online parameters**
 - No place (file/DB) to remember the status of include/exclude, dummy trigger
 - No particular parameters, except those given in command line option
 - Crucial initial values are hardcoded in program / firmware
 - Every connection configuration is hardcoded in ttaddr
Code update 1

- **pocket_ttd reusing ftprogs**
 - regft, trigft, statft, ttaddr codes are called
 - messages into char string (instead of stdout) and then to log file

- **statft code management**
 - ftsw register map has been updated several times
 - statft checks the firmware version and show differently
 - now we can forget older versions and keep only latest ft3m and ft2u
 - code rearrangement is needed, yet to be done

- **pocket_ttd update**
 - first priority: need to properly react against errors
 - first thing to do: clean up statft dependeces
 - next thing to do: make statft and other variables
Code update 2

- **ttctrld update**
 - ERROR reporting are not properly implemented
 - PAUSE handling is needed to pause trigger during CDC HV trip
 - ttctrld should not do VME access
 - extra/ftprogs2 to be removed from daq_slc
 - possible only after pocket_ttd update
Data format

Information sent from TTD to datastream

- (header)
 - word 0: bit[31:0] nword=22
 - word 1: bit[31:0] nword_in_header=8
 - word 2: bit[31:16] nevent=1; bit[15:0] nboard=1
 - word 4: bit[31:0] event.number
 - word 5: bit[31:0] unassigned=0
 - word 6: bit[31:8] nodeid=0x5f454444 (ascii code for "TTD"); bit[7:0] version=0x20 (as of 2019.3.25, next version will be 0x31, ascii code '1') (updated 2019.3.25)
 - word 7: bit[31:0] unassigned=0

- (data)
 - word 9: bit[31:0] utime;
 - word 10: bit[31:0] event.number;
 - word 11: bit[31:0] frame-count;
 - word 12: bit[31:0] time since previous trigger
 - word 13: bit[31] her-inj{1} or ler-inj{0}; bit[30:0] time since last inj
 - word 14: bit[31:11] unused=0; bit[10:0] bunch number (yet to be implemented)
 - word 15: bit[31:0] unused=0
 - word 16: bit[31:0] unused=0
 - word 17: bit[31:0] unused=0
 - word 18: bit[31:0] unused=0
 - word 19: bit[31:0] unused=0

- (trailer)
 - word 20: bit[31:0] reserved=0x5d544440
 - word 21: bit[31:0] magic number=0x7fff0000

Time is in system clock (127 MHz) unit, for 32-bit, unless otherwise specified.

- Version number is still 0x20 now
- RawFTSW code was recently modified to accept other versions
- NTP time (sec, µsec) to be added, if it does not degrade the readout speed
- If it works, new version number will be used
Pocket-FTSW?

- **PocketDAQ / Pocket-DAQ-upgrade** does not need full FTSW spec
- **1-port FTSW function** can be implemented on Xilinx eval board (e.g., sp605)
- **Missing on eval board:** 127 MHz clock, RJ-45 connector
- **FMC card**
 - 1 port FTSW can be easily generated
 - Second RJ-45 to test second RJ-45 or AUX input
- **No software**
 - No need to prepare VME CPU
 - Chipscope based control for limited ftprogs function

Anybody willing to work on this?
Work priority

1. NSM2 update
2. ftprogs (statft) clean-up
3. pocket_ttd clean-up
4. ttctrld clean-up
5. daq_slc clean-up

Implementation of PAUSE, error report, etc are in the course of the clean-up procedure above