A 3D Track Finder for the Belle II CDC L1 Trigger

Sebastian Skambraks

Max Planck Institute for Physics

Aug 27, 2019

Outline

Introduction Background 3D Hough Finder Algorithm Accuracy

Belle II Trigger and DAQ Workshop 2019

Introduction - Belle II Background

Beam Background Tracks

e⁻ e⁺ e⁺

NeuroTrigger Goals

- reject tracks from $z \neq 0 \text{ cm}$
- single track z-vertex resolution < 2 cm</p>
- ▶ latency < 1 µs</p>

- ► tracks generated at the beam-line & -wall with vertices z ≠ 0 cm
- increase with luminosity
- main processes:
 - Touschek effect
 - radiative Bhabha back scatters
 - beam gas

 \Rightarrow need z vertex reconstruction at 1st trigger level

3D Hough Finder (p_T, φ, ϑ)

Motivation

- include CDC stereo hits
- improve track finding efficiency
- get NN hit selection in one step (axial & stereo)
- estimate θ

 (allow NN sectorization)

Track Finder Concept

Bayes'ian estimation

$$P(\textit{tracks}|\textit{hits}) = rac{P(\textit{hits}|\textit{tracks}) \cdot P(\textit{tracks})}{P(\textit{hits})}$$

with a set *tracks* and a set *hits*.

- general approach
- allows easy change of the track and hit parametrization
- results equivalent to a Hough transformation

Sectors in p_T (left) and in ϑ (right).

A 3D Track Finder for the Belle II CDC L1 Trigger (Sebastian Skambraks)

Hits in Parameter Space

2D Hough Transformation

- 1. conformal mapping: $x' = \frac{2x}{x^2 + y^2}$; $y' = \frac{2y}{x^2 + y^2}$
- 2. Hough transform: $p_T^{-1}(\varphi) = C \cdot (x' cos(\varphi) + y' sin(\varphi))$

- tracks are intersections
- blue region:
 *p*_T > 350 MeV

Discrete 2D Hough Space

binning of track parameters (φ, p_T) Construct Houghplane

$$H(t|hits) = \sum_{h \in hits} P(t|h)$$

P(t|h) single hit contributions. H(t|hits): Houghplane for all hits.

Cluster Peaks

- identify tracks
- are local maxima
- have a minimum weight

Transverse Hit Positions

- axial hits appear as points
- stereo hits as line segments
- θ binning allows to represent stereo hits as points

Transverse Hit Positions

- axial hits appear as points
- stereo hits as line segments
- θ binning allows to represent stereo hits as points

3D Hough Finding

3D Finder Setup

$$H(t|hits) = \sum_{h \in hits} P(t|h)$$

weights for all possible tracks t given a set hits.

Track Phase Space

▶ $p_T^{-1}, \varphi, \vartheta$

Hit Phase Space

► TS-id, priority

P(t|h)

- approximated by a 5D array A (stored as lookup table)
- A can be trained using Monte Carlo

	p _T	φ	θ	id	prio
bins	40	384	6	2336	3

Table: size of the array A

3D Finder Training

Filling

for each track

- 1. find related hits: h
- 2. bin track parameters: t
- 3. increment A[t, h] for all pairs [t, h]

Normalization

normalize A for all tracks t (\equiv all tracks are equally probable)

$$A[t,h] = \frac{A[t,h]}{\sum_{\text{all}h} A[t,h]}$$

Set Bit Width

- adjust maximum bit width of each cell in A
- currently 3 bits are used

Track Finding

Construct "Houghplane"

$$H[tracks] = \sum_{h \in hits} A[tracks, h]$$

for an event with a set *hits*, *tracks* are peaks in H

Clustering and Track Estimation

1. find clusters

density based clustering algorithm (DBSCAN) require cluster cells to have a minimum weight: minweight = 24

2. select contributing hits

hits with high weight contribution to the cluster require a minimum number of hits related to a cluster: minhits = 4

3. calculate track parameters weighted mean of cluster cells close to the peak require cells to have a minimum weight >thresh×peakweight: thresh = 0.85

Accuracy

A 3D Track Finder for the Belle II CDC L1 Trigger (Sebastian Skambraks)

Track Finding Efficiency

3D Track Finder

- high track finding efficiency
- improves efficiency for tracks with low p_T and flat θ angles
- improves 2D track parameter accuracy
- \blacktriangleright provides ϑ estimate
- directly relates stereo hits to tracks
- Hough map construction implemented in HW
- HW clustering under investigation

Backup

Introduction - Interaction Region

- \blacktriangleright scattering at material \rightarrow background tracks
- two separate rings with different energies

NeuroTrigger - Input Representation

- idRef: crossing point of the track with the layer
- α: crossing angle of the track with the layer
- ▶ φ_{rel}: distance of the wire position to idRef
- t: drift time

Background - Suppression

- cumulative bkg rate after a cut on the neural network z
- z_{cut} is varied in 5 cm steps

Background - Suppression

- cumulative bkg rate after a cut on the neural network z
- z_{cut} is varied in 5 cm steps

Background - Suppression

- only tracks with $|z_{MC}| \ge 1 \text{ cm}$
- cumulative bkg rate after a cut on the neural network z
- z_{cut} is varied in 5 cm steps