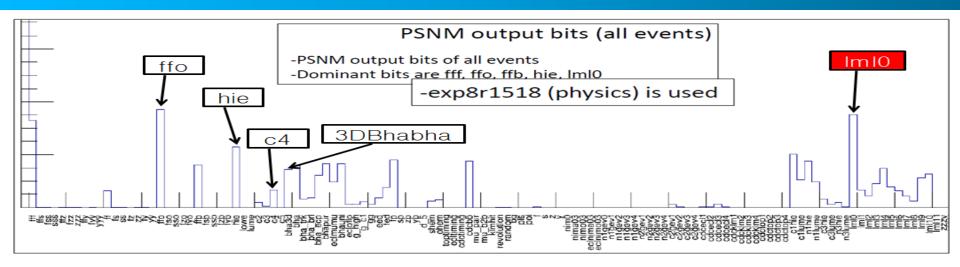

ECL Trigger Summary

Y.Unno
Hanyang univ.
TRG/DAQ workshop
2019/08/26-29

Belle2 ECL trigger system

FAM

- Receive 576TC analog data from ShaperDSP
 - ●1TC consists of 4x4=16Xtals
- Digitization with FADC
- •TC E&T rec. by waveform analysis(χ^2 fit) on kintex7

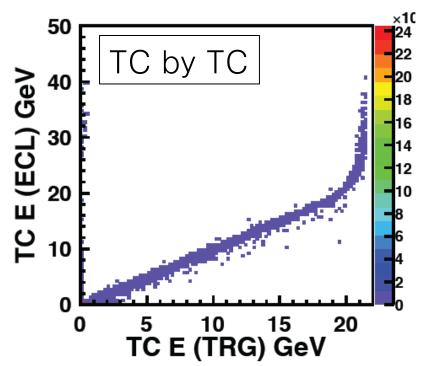

●TMM

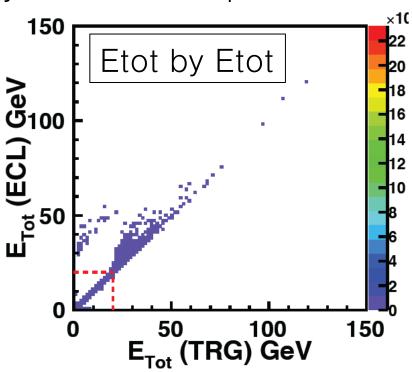
Play an role of merger on kintex7

● ETM

- ECL trigger decision by all TC E&T on virtex6
- Send ECL trigger summary to GDL
- Send cluster data to GRL
- Send fired TC E&T and trigger summary to HSLB

3 cluster trigger

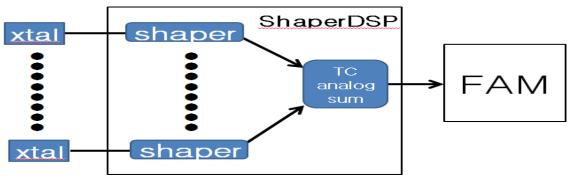

- New 3 cluster trg(lml12) proposed by Chris.
 - •Trigger rate \rightarrow 1/4
 - \bullet ε(τ) to 87.6% from 89.5%
 - $\bullet \tau$ group is checking if it's ok or not.
- ●L1 will be issued by "ImI0.OR.ImI12" during autumn run
- •hie will be highest in ecltrg bit
 - Could be highest in trigger bit after z-trg is ready
 - •Need new hie(?) or alternative bit in the near future


ecl_bst bit (Etot>20GeV)

- ●To avoid ERROR in ECL by vetoing "ECL burst" events
 - ecl_bst was prepared and tested in beam data
 - •Found ECL and ecltrg data inconsistency…
- ●ECL prepared FW to avoid the ERROR w/o ecl_bst veto···
- Requested to activate ecl_bst bit from Alex since
 - The event will not be used in physics analysis
 - might be useful to avoid ERROR in other sub-detector
 - •Can CDCTRG provide similar bit !?
- Decided to record ecl_bst during autumn run w/o veto

ECL and ecltrg data consistency

- ●O(0.01%) data inconsistency are found
 - Both in cosmic and beam data
 - Both in TC by TC, and evt by evt data comparison

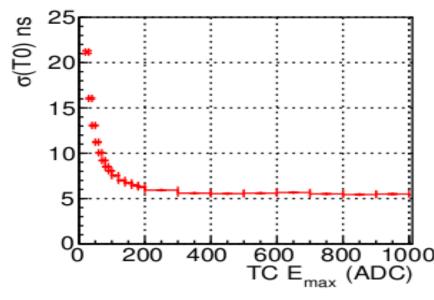

•More detail study is necessary.

3D Bhabha veto bit

- •3D Bhabha logic is available on GDL during Phase2.
- ●2D is used in GDL, but 2D and 3D recorded w/o pre-scale
- Need an approval from belle2 collaboration based on data
- •Asking the approval for physics groups.
 - JIRA ticket(https://agira.desy.de/browse/BIIOPS-8)
 - Chris quickly checked beam data
 - Bhabha and γγ efficiencies are OK
 - •For $\pi\pi\gamma$, 3D is much better than 2D
 - τ group approved
 - •https://agira.desy.de/secure/attachment/29730/29730_Tau_L1BhabhaVeto_28June2019.pdf
 - Waiting for approval from low multi and dark sector physics group
- •(I think) 3D will be used from autumn run.

TC timing problems

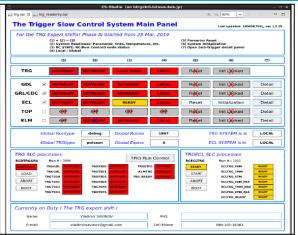
- Timing source in spring run was only ECL trigger
- ●TC Timing problems from Phase2
 - 1 run by run TC timing shift due to 3 bugs in FAM
 - → All fixed, TC T calibration is possible.
 - 2 Large TC timing resolution than expected
 - \bullet $\sigma(T)$ ~6ns in data, but ~1ns in tsim for Bhabha event

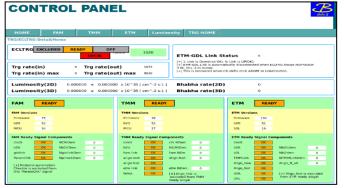


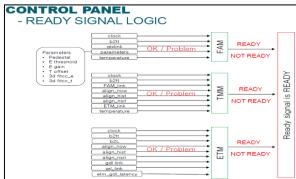
- Xtal ch by ch timing adjustment is not possible…
- Need to implement the effect into tsim
- 3 TC timing bias from fitter on FAM
 - ~5ns shift as function of energy (+ noise)
 - → not started yet

TC timing problems

Offline (CDC based) eventT0 for hadron skim


- Bias comes from fitter
- Depends on TC E and noise
- Bias correction is possible after fitter on FAM


- Large resolution in low E deposition
- Difficult to improve TC T resolution
- TC energy weighted event T0 on ETM would improve the resolution
- Progress / improvement on timing resolution are necessary
 - •if TOP and CDC need much more time to provide timing


TC E and T calibration

- Energy calibration
 - calibration was NOT possible during Phase2
 - Run by run energy fluctuation was fixed by ECL expert
 - ●Xtail ch by ch (~9000Xtal) calibration using ecltrg & ECL
 - ●Gain tuning by ~9000 attenuators on ShaperDSPs
 - Energy resolution became 2 times better
- TC Timing calibration
 - Not possible until near end of spring run
 - •TC timing fluctuated run by run due to bugs on FAM…
 - Variation of CC became much smaller than before
 - Effect on event timing will be checked with eventT0
- Confirmed methods of E and T calibration worked well
 - Modularizing calibration programs

Slow control

- Developed by C.H.Kim/E.J.Jang. Worked in phase3 very well.
 - SLC status check and recovery procedure
 - Manual for trg and ecltrg experts worked well too.
- Provides "ecl trg ready" signal, checking many pars continuously.
- Worked well to store/read 60k parameters to/from configuration DB
- •Fully utilize archiver to check important parameters
 - ■TC hit rate, TC noise, temp., trg rate of each bit, etc.
 - Par check not only by CSS but also by CUI (Thx to Seohkee, Sungin)
- Some issues(e.g. initialization button didn't work), but we are on fine tuning stage.

software

Update for Release 04-00

- Unpacker Update
 - Add ecl-burst bit
- Condition DB update
 - Modify ADC conversion factor(int -> double)
 - · Selection bhabha condition
 - μμ bit condition
 - ECL burst bit
 - The number of Cluster exceeding 300 MeV
- Calibration Module
 - · Timing calibration module
- QAM
 - Basf2 base QAM
 - Add few variables
 - ECLTRG Total Energy peak and width
 - ECLTRG Cal-timing peak and width
 - ECLTRG Cluster Energy peak and width
 - Low Hit TC (Less than 0.1 x Average) in Forward,
 Add executing scripts in examples dir.

To do list for ECL Trigger software

- Simulation
 - Background Overlay
 - Realistic timing resolution in MC
 - · Crystal base shaping module has been prepared.
 - Need more study in FAM and ShaperDSP.
 - Integer version
 - Firmware version
- ECL Trigger Unpacker
 - · Update with ETM firmware.
- Calibration Module
 - · Energy calibration Module.
- Condition DB update
 - Configuration DB → Condition DB system is needed

Summary

- ECL trigger system worked stably during phase3
- Many progresses in spring run and summer
 - New 3 cluster trigger and ecl_bst are ready
 - •3D Bhabha would be used from autumn urn
 - Big timing problems were understood and fixed.
 - TC E and T calibration worked as expected
 - SLC system in fine tuning stage
- many to-do items remains still
 - Will be done before(or during) autumn run

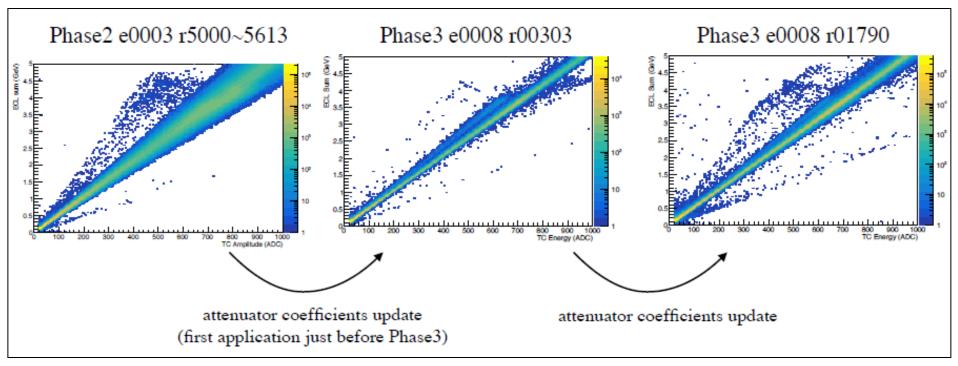
backup

To-do list

- •Firmware (FAM)
 - correction of TC timing bias
 - ■TC E and T measurements for 2 continuous signal pulses
 - Take into account injection veto for noise monitoring
- •Firmware (ETM)
 - Event timing logic from most energetic TC to multiple TC
 - Simulation study is needed first to see the performance
 - Make firmware more healthy (currently > 7 strategies are needed)
 - Clustering to all from 6 cluster
 - ●UT3 to UT4
- Test pulse
 - Prepare test pulse analysis basf2 module
 - Analyze both ECL and ecl trigger data for TC E and T
 - New CC quickly for HW replacement(ShaperDSP, etc)
 - Investigate the reason of 2 timing peaks

To-do list

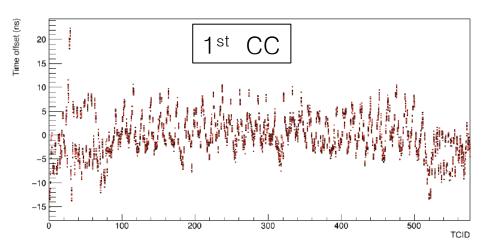
- Update of confluence of ecltrg trigger bits for other belle2 members
- Trigger rate and beam background study for high luminosity condition
- Software
 - Beam background mixing module
 - Take into account nuclear counter effect
 - (but we don't know the signal shape…)
 - ConditionDB
 - Integer/firmware tsim-ecl
- Noise related program
 - •updates noise level automatically for bkg mixing module
 - updates noise covariance matrix automatically
 - check TC waveform when injection veto is off.
- ●Belle2 note
- Paper

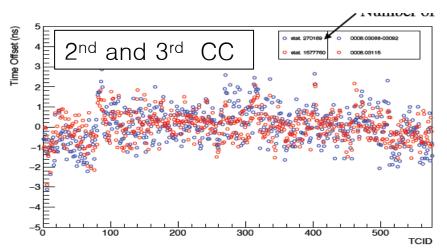

To-do list

- Study for future upgrade
 - (strongly depends on upgrade of ECL HW)
 - ●Pure Csl option
 - New bit instead of hie(!?), which is insensitive for beam background
 - Xtal ch by ch timing correction before analog sum on ShaperDSP
 - Improve timing resolution for low energy deposition
 - ●(Waveform record(?) by FAM or ETM ?)

Energy calibration

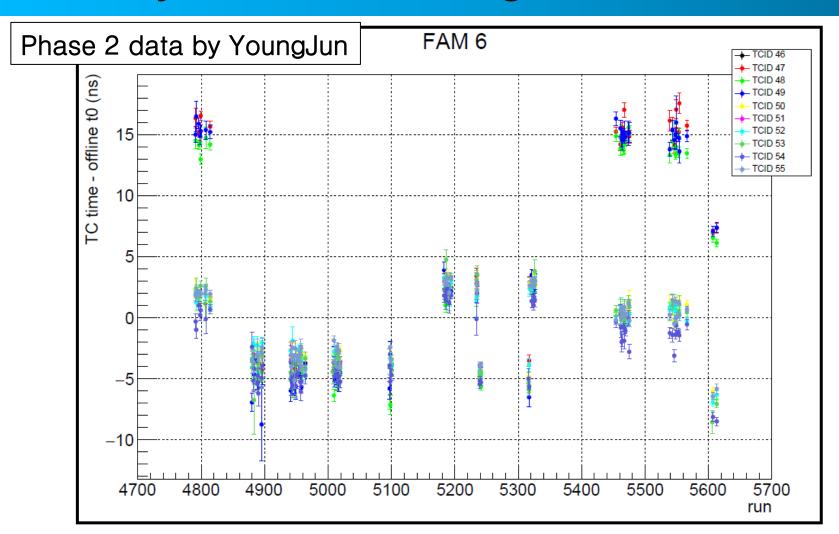
$$\begin{split} f(E^n, E^n_i; p_i) &\equiv \sum_n (aE^n - \sum_i p_i E^n_i)^2 \rightarrow min \\ \frac{\partial f}{\partial p_i} &= \sum_n (-2)(aE^n - \sum_j p_j E^n_j) E^n_i = 0 \\ &\rightarrow \sum_n aE^n E^n_i = \sum_n \sum_i p_j E^n_j E^n_i \end{split} \qquad \begin{array}{l} \text{n: event index} \\ \text{i. j: crystal index in TC} \\ \text{Es: TC energy} \\ \text{Energy in TC} \\ \text{p: Attenuator gain ratio (current/new)} \\ \text{a: calibration factor (5.25 MeV/ADC)} \end{array}$$

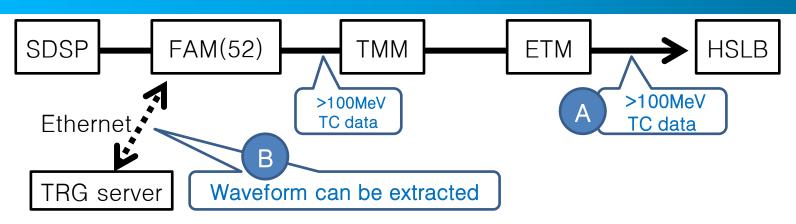

- •(meaningful) calibration was possible from spring run
- ●Xtail ch by ch (~9000Xtal) calibration using ecltrg & ECL beam data
 - ●Gain tuning by ~9000 attenuators on ShaperDSPs



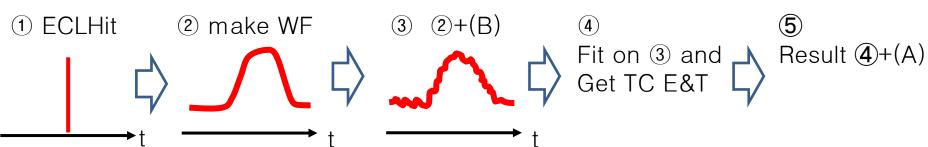
- Energy resolution became 2 times better (σ (hie) from ~50MeV to ~25MeV)
- •TC energy measurement became much stable than Phase2
- Modularizing energy calibration softwares is in progress.

TC timing calibration


- •TC by TC timing calibration was not possible until near end of spring run
 - •TC timing largely fluctuated run by run due to bugs on FAM…
- Calibration was done using Bhabha samples
- TC timing correction is done in FPGA on FAM


- •TC timing became much stable than before
- Effect on event timing will checked with CDC based eventT0 using data
- Preparation of module for calibration with test pulse is in progress.

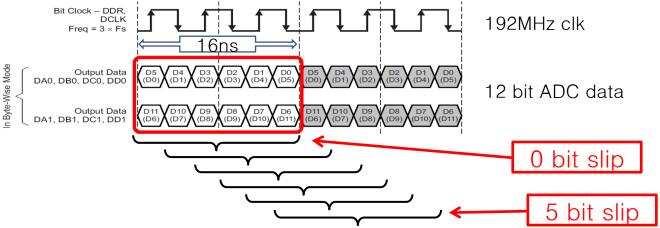
Run by run TC timing shift



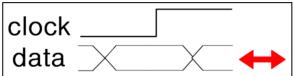
- •Run by run TC timing shift even in single FAM board!
- ●TC timing calibration cannot be done, it's almost meaningless…

beam background overlay

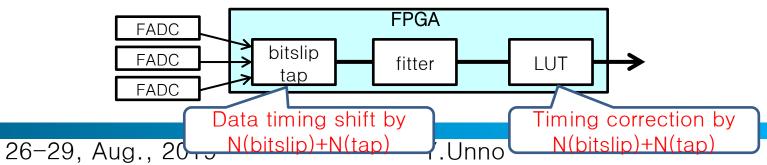
- •FAM does not have b2link, no optical transceiver.
 - Difficult to take waveform data of all TC for each random trigger
- Alternative idea is to utilize data from (A) and (B)
 - ●(A) TC data(not WF) 100% associated with random trg by GDL
 - ●(B) waveform taken random trg by FAM
 - Check averaged noise level in each run and store into conditionDB

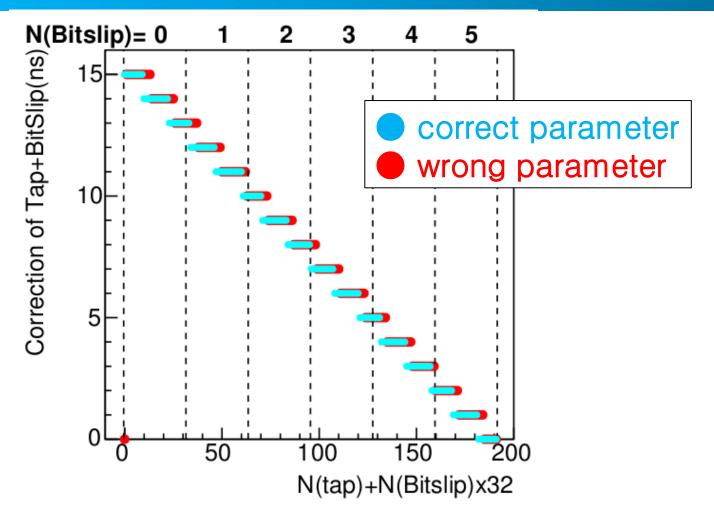


20

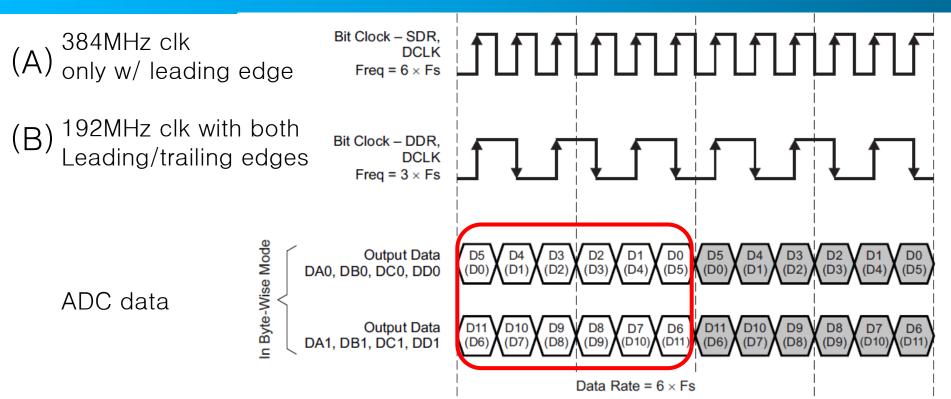

•No objection for this method in trg/soft session at last b2gm, but no actual progress since then…

Correction of bitslip and tap

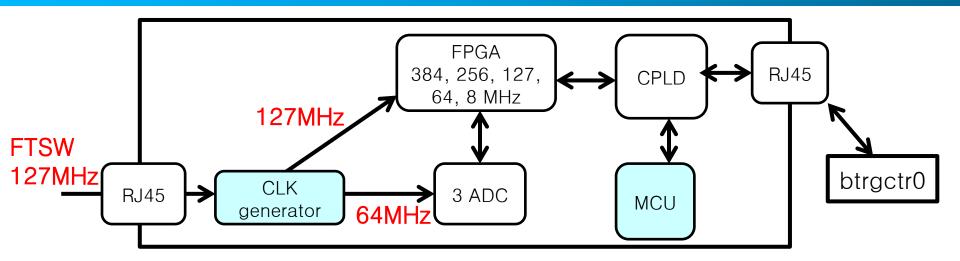

- ADC data capture by two parameters, bitslip and tap
 - ◆bitslip: slip 12bits data by 0-5 bit (1bitslip=3ns) to find correct set of 12bit data.


•tap: shift ADC data with 0-31 tap(=0.0-2.3ns) with 75ps interval in order to adjust position of middle of data to clock edge(192MHz).

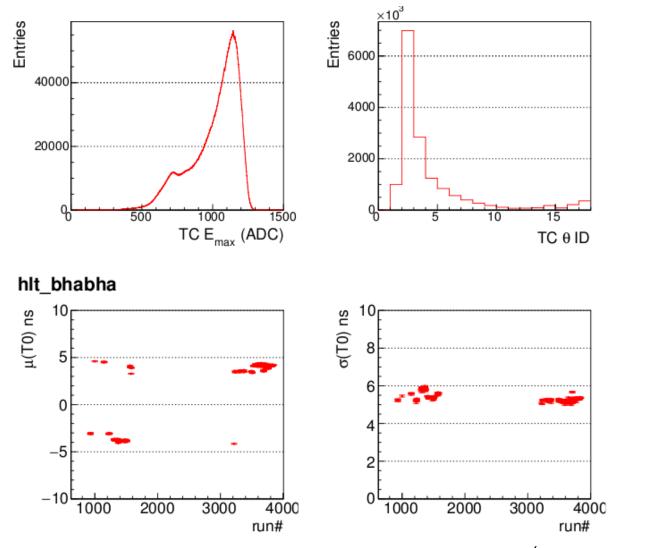
Correction of data timing from N(bitslip) and N(tap)



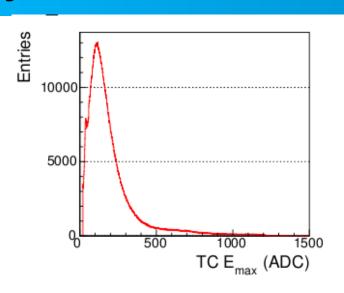
Correction of bitslip and tap

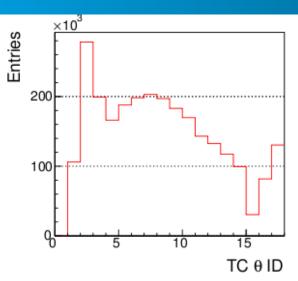

With wrong parameters, 1 or 15 ns TC timing shift happened whenever FPGA was rebooted...

Clock of ADC data capture

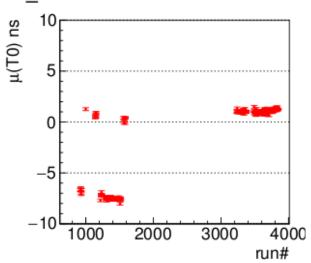


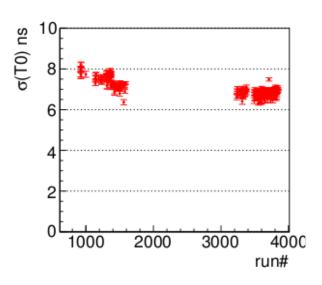
- •In (B), leading edge captures odd # data, trailing captures even # data
 - ●Phase(0 or 180) of 192MHz is set arbitrary intentionally
 - This causes 3ns TC timing shift whenever FPGA is rebooted.
- Changed to (A) from (B) to avoid 3ns timing shift

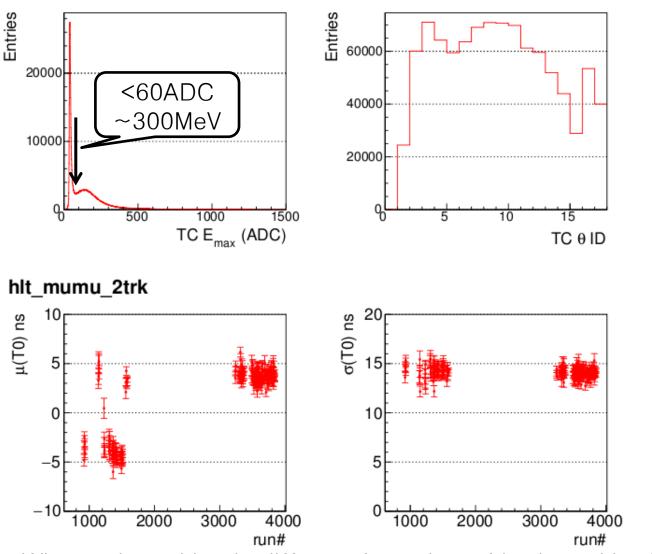

auto-reboot function in MCU



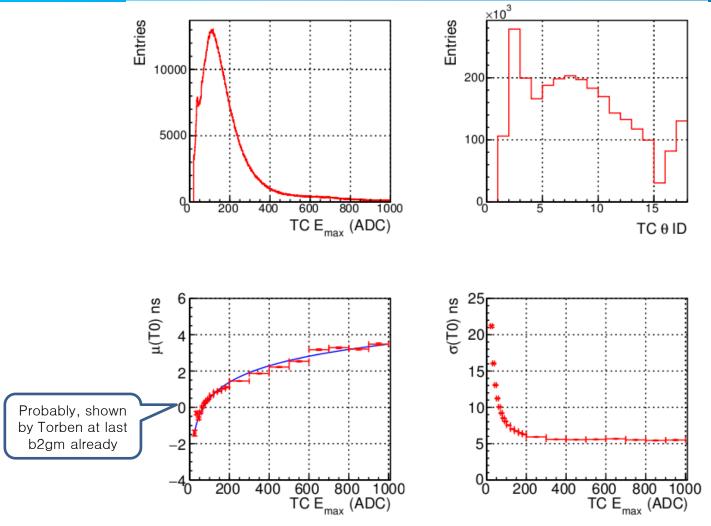
- Auto FGPA reboot function in MCU
 - when MCU detects unlocked clock (b2tt too !?),
 - •it starts initialization of clock generator, and then reboot FPGA automatically.
- When FPGA reboot command is sent to MCU from btrgctr0 by user
 - ●(1) clock generator initialization, then (2) FGPA reboot
 - ●however, auto-reboot function detects clock down at (1), then
 - ●All are screwed up, input 127MHz and output 127, 64MHz not synchronized, then causes a few(?) ns timing shift…
 - Excluded auto-reboot function from MCU.
 - ●(wondering how FAM were working well so far…)




8ns timing shift is cased by GDL+FTSW (probably)



hlt_hadron



Why peak position is different from that of hadron skim?

27

- •Plan to update FAM firmware to apply timing correction by LUT.
- First, revisit simulator to find correlation between bias and noise level.

26-29, Aug., 2019