TTD status

Mikihiko Nakao (KEK)

mikihiko.nakao@kek.jp

2019.8.26
Trigger/DAQ workshop at Yonsei
Outline of this talk

- **TTD**: intro
- **FTSW**: inventory, failures, replacement
- Cold startup
- Injection veto
- GDL timing
- git repository and software
TTD intro in one page

- **TTD** (Trigger Timing Distribution) — **the system**
- **FTSW** (Front-end Trigger SWitch) — **the module**
- **b2tt** (Belle II Trigger Timing) — **the protocol**

Features

- Clock 127 MHz from SuperKEKB RF to everywhere
- b2tt protocol to send trigger and many other things, receive busy, error and many other things
- CAT-7 cable connections / fibers between E-hut and detector
- JTAG connections to remote FEEs and FTSWs

Specs

- O(a few 10ps) jitter clock for readout/Belle2link
- 30kHz triggers, 190ns minimum trigger separation
- Trigger flow control mostly based on SVD APV emulator
Updated plot for the Phase 3 setup (not to change until DAQ upgrade)
FTSW inventory

- **FTSW version 2** - **21 boards are in use** (SVD, TOP, ECL)
 - 7 type-P (8 port optical), 8 type-S (24-port RJ-45)
 - type-P ⇔ type-S conversion by soldering 8-port RJ-45
 - 6 type-R (receiver) with no +5V for ECL, incompatible with others
 - only 2 fresh spares, 1 used spare, + 2 for ECL special
 - no boards to loan for pocketDAQ, unless Virtex 5 chip is donated

- **FTSW version 3** - **122 boards are in use**
 - >5 spares, but now some are taken by Kunigo-san’s setup
 - 6 type-S (receiver) with no +5V for ECL, incompatible with others
 - others can be converted between type-P, -R, -S by soldering work
 - ready-to-go type-R spare should be always prepared

- Production plan?
FTSW port degradation

- FTSW ports are not equal...
 - Well, ports are designed to be equal, except for trace differences
 - But, time-to-time, exchanging ports is a solution to a problem
 - There have been several FTSW boards with one broken port

- Some FPGA I/O-buffer may be broken or degraded?
 - If broken, it is easy to identify
 - So far we had no measure for the degraded ports

- Avoiding the degraded ports?
 - If we can quantify the degraded ports, we can avoid using them
 - Kunigo-san's b2tt checker firmware (talk tomorrow)
 - Replacing FPGA fixes the problem if the board has no other use
FTSW 032 for TOP

- **Problem**
 - FTSW 032 (TOP COPPER) lost jitter cleaner setup at power-cycle

- **Solution?**
 - FTSW is replaced with a spare (FTSW 082)
 - but FTSW 032 does not show this problem at B2 setup
 - FTSW 032 is considered to be a spare

- **If it happens again?**
 - FTSW 082 looks fine now, but the same problem may happen again
 - Jitter cleaner programming procedure is now included in a script, can be fixed by any DAQ / TOP expert
Other possible FTSW failures

- **3.3V DC-DC converter breakdown**
 - **sign:** no LED light
 - **fix:** replace the SIP DC-DC module (easy soldering)

- **Spartan-3AN program lost**
 - **sign:** JTAG-port lower LED is OFF
 - **fix:** reprogram Spartan-3AN (need to sit in front of FTSW)

- **Jitter cleaner permanent damage**
 - probably it will not happen, but jitter cleaner setup can be made unchangable (with correct or incorrect config)
 - it happened when I was developing the jitter cleaner setup firmware
 - therefore, **jitter cleaner reprogramming should be minimized**

- **Other Virtex-5 FPGA breakdown?**
 - **Example:** too high current draw on +2.5V power line
Spare production?

- So far, the FTSW hardware error rate is rather low
 - In several places, ports were exchanged and behaving better
 - Only two FTSWs on detector were clearly broken: 1 KLM and 1 ARICH
 - Replacing FPGA solved the ARICH problem
 (KLM FTSW is yet to be repaired)

- Long term lifetime is yet unknown
 - Current failure rate is low enough for 10-year operation

- Availability
 - 10 PC-boards are in hand for each of FTSW version 2 and 3
 - Most of the parts are still available online in the market
 - Virtex-5 FPGA may take a few months for delivery
 - Rare parts (DC-DC, Xtal) are in hand for ~40 boards
Other spares

- **Item list to run TTD** (besides FTSW)
 - FTOP / FTOR cards for optical transceiver
 - Optical transceivers
 - TT-IO boards
 - VME CPU
 - VME crate

- **Status**
 - Only one spare of FTOP / FTOR cards — since they are almost / fully passive card, FTOP / FTOR to be reused when FTSW with them is replaced
 - Ready-to-use spares are available for the rest
FTSW errors

- **clklost**
 - no clklost if nobody work in E-hut near rack B-1

- **ttlost** (more in Kunigo-san’s talk tomorrow)
 - FTSW port dependence, cable dependence, FEE dependence?
 - Possible reasons: attenuation, noise, spike, clock jitter?

- **ttlost in COPPER**
 - Probably different reason, yet to study

- **Busy not cleared** — in next slide

- **b2llost due to clock?** — FTSW port characteristics?

- **other b2llost, seu, fifoerr** — these are not TTD errors...
BUSY not cleared?

- **BUSY collection of TTD**
 - To minimize latency and deadtime, busy-up and busy-down are implemented as special 8b10b signal inside b2tt
 - If busy-down is missed, busy is kept even if real source is cleared
 - Happens in SVD, ECL-COPPER (?)

- **Suspicion 1**
 - Timing of reset and busy: SVD needs to become busy at run start
 - SVD problem turned out to be a wrong parameter setting of APV busy emulator

- **Suspicion 2**
 - Merging many short busy signals may be the cause? Plan to study
SEU reset

- FTSW counts recovered SEU
 - shown as seu=NN in statft
 - SEU count is not reset by regular resetft
 - “resetftf seu” to clear, but there was a bug in this command...
 - Fixed in hardware and firmware
Cold start procedure

- **Recovery:** from power loss, clock loss, firmware update

- **Document:** 2019.8.5 version on git ttd repo
 - Power-up procedure
 - Programming main TTD crate modules
 - Checking JTAG connection to remote FTSWs (and FEEs)
 - Trouble-shooting

- **Drill by Kunigo-san (twice)**
 - Basic procedure could be done without me
 - One (undocumented) problem happened, need to be written down

- **More…**
 - Master firmware update is planned in September
 - The document should include up to the procedure to identify and replace broken modules
JTAG scripts

- **jtagft**
 - Command-line version of subset of Xilinx impact, but it is not a user-friendly program

- **script**
 - to check the JTAG connection to remote FTSWs and FEEs
 - to reprogram remote FTSWs *(and jitter cleaner on them)*
 - this script can be updated to program remote FEEs, if we decide how to keep firmware files to be used

```
ttd11% ls /usr/local/bin/jtag- *
/usr/local/bin/jtag-chain-ari.sh  /usr/local/bin/jtag-program-ari.sh
/usr/local/bin/jtag-chain-bklm.sh  /usr/local/bin/jtag-program-bklm.sh
/usr/local/bin/jtag-chain-cdc.sh  /usr/local/bin/jtag-program-cdc.sh
/usr/local/bin/jtag-chain-ecl.sh  /usr/local/bin/jtag-program-ecl.sh
/usr/local/bin/jtag-chain-eklm.sh  /usr/local/bin/jtag-program-eklm.sh
/usr/local/bin/jtag-chain-svd.sh  /usr/local/bin/jtag-program-svd.sh
/usr/local/bin/jtag-chain-top.sh  /usr/local/bin/jtag-program-top.sh
```
JTAG failure

- 1 CDC and 2 ARICH FEE
 - jtagft does not work, but can be programmed by Xilinx impact
 - not because of a particular FTSW port

- Reason?
 - could not be a signal level problem since both cases are driven by LVDS (same type chip)
 - timing of jtag TCK is different, jtagft is generating more equal-interval TCK signals at lower rate
 - impact may be trying something undocumented in addition when it detects the problem?

- How to prove?
 - Need to capture the jtag bit stream of impact to the problematic FEE
 - A special FTSW firmware (and lot of work) to do this
Injection veto

- **Kicker signal**: it has been implemented and tried to use
 - Kicker signal itself is correctly distributed
 - Bug: HER flag was always on, even for LER injection
 - Also in pocketTTD version of firmware, used at DESY by PXD
 - Took sometime to fix, now in git repo
 - Master FTSW firmware is yet to be reprogrammed

- **Injection veto pattern**
 - Pattern is decided and generated in GDL, available via slow control
 - TTD has a mechanism to distribute to FEE
 - But PXD is not using it (!), their gated mode uses its own pattern
 - Slow control part is not yet working, but low priority to fix
GDL timing

- **GDL to TTD**
 - TTD receives one-bit decision and 4-bit type, in one clock signal
 - GDL is driven by clock from TTD
 - Therefore timing adjustment is needed, done at every run start

- **Problem**
 - Nakazawa-san reports that trigger timing is shifted by one-clock

- **Fix?**
 - Reason not known yet
 - Probably need some feedback signal from GDL, e.g., trigger timing from TTD to GDL sent back via another line
 - 5-4 pair of CAT-7 into OUT-1 can be used
 - Another modification to ft3m firmware
git repository and software

- **ftsw repo**
 - firmware source and bit files (including TT-RX, TT-IO)
 - schematics of FTSW boards
 - software and documents are moved to a separate repo

- **ttd repo**
 - ftprogs: command line tools, including statft
 - ttaddr: program to configure connections and collect status
 - pocket_ttd: main data taking process
 - documents

- **daq_slc**
 - ttd repo to be used as submodule of, to replace “extra” files

More to be discussed in parallel session tomorrow
Summary

- TTD expert other than me (Kunigo-san) strengthen the team
- Some of the small hardware problems are fixed
- Other small hardware problems are yet to be fixed
- More hard work needed on software