Status on ETM Firmware

SungHyun Kim
Hanyang University
TRG/DAQ Workshop Aug. 2019
ETM Status
ETM Status

- ETM-GDL GTX → GTH to avoid instability of GTX protocol on GDL

Latency: L

Unstable?

Latency: $L + \alpha$? $L - \alpha$?

Stable?

1 GTX for GDL
4 GTH for GRL

1 GTX
4 GTH

GDL
GRL

1 GTX for GDL
3 GTH for GRL

1 GTH
3 GTH

GDL
GRL

PP
There is no latency budget between ETM-GDL link to veto Bhabha events.

Test is needed.

- TRG information w/o Fine-time tuning
- 3D Bhabha veto signal w/ Fine-time tuning (8ns)

LEMO cable
Low Multiplicity bit

- LM0
 - $N(\text{CL}) \geq 3$ in $\theta[1-17]$, at least 1 CL ≥ 300 MeV (Lab), not ECL 3D Bhabha
- New proposal by Chris
 - $N(\text{CL}) \geq 3$ in $\theta[2-16]$, at least 1 CL ≥ 500 MeV (Lab), not ECL 3D Bhabha
- LM 11 : No 2 GeV (CM) CL in an event (psv : 0)
New Firmware

- ETM to GDL thru LEMO cable
 - 3D Bhabha veto bit w/ Fine-time (8ns) tuning
- Keep LM 0 bit
- Replace LM 11 bit
 - Current: No 2 GeV (CM) CL in an event
 - New: \(N(\text{CL}) \geq 3 \) in \(\theta[2-16] \), at least 1 CL \(\geq 500 \text{ MeV (Lab)} \), not ECL 3D Bhabha
- Test is needed
Data consistency

ECL & ECL-TRG
Data Analysis

• Data consistency check between ECL & ECL-TRG (TRG)
 • Cosmic Data
 • Data: e9r0712, w/o GDL (Mid. July)
 • Analyze 23M events
 • TRG threshold: 40 ADC (= 0.21 GeV)
 • Beam Data
 • Data: e8r3115, Last day run of Phase-III.
 • Analyze 3.6 M events
 • TRG threshold: 19 ADC (= 0.10 GeV)

• There is discrepancy between ECL and TRG data set
 • Timing: ECL (± 1 µs) vs TRG (~± 0.5 µs)
 • Energy threshold: ECL (low threshold for Xtal) vs TRG (0.21 / 0.10 GeV for TC)
Events selection

- Events selection/procedure
 - ECL : Xtal data → TC data using TC mapping utility
 - Xtal “Quality flag” from ECLDigitizer and Xtal Calibration “Status flag” from ECLDigitCalibrator are used.
 - At least one Xtal shows strange flag, exclude corresponding “TC”.
 - Add up Xtal deposit energy to convert TC-like energy. (Apply 0.21 GeV threshold)
 - Timing selection is applied.
 - 1) TRG timing selection ± 50 ns.
 - 2) ± 500 ns
 - TRG :
 - Timing selection
 - 1) Exactly same as ETM logic.
 - 2) Whole data (~ ± 500 ns)
 - Exclude some TCs which corresponding to excluded ECL-TC by Quality & Status flag.

Case 1) timing selection
Cosmic data analysis (1)

- **Timing Selection**
 - TRG: Same as ETM
 - ECL: TRG ± 50 ns

- **Consistency check**
 - Total TC hit (31492172 : 31.5M)
 - a: ECL TC and TRG TC are matching (28530168)
 - b: ECL TC fired, but no TRG TC hit (840356)
 - Threshold < ECL TC < Threshold + 50 MeV (0.26 GeV) (831266 : 99%)
 - c: TRG TC fired, but no ECL TC hit (2121648)
 - Threshold < TRG TC < Threshold + 50 MeV (0.26 GeV) (2051045 : 97%)
 - mis-matching TC = 9.4% (low E region 97.4%)
Cosmic data analysis (1) (cont’d)

- Region (b): No TRG, but ECL

- Summary of region (b)
 - condition 1) TRG timing ± 50 ns
 - condition 2) TRG timing
 - Timing selection affect near threshold region
Cosmic data analysis (1) (cont’d)

- Region (c): No ECL, but TRG

- Summary of region (c)
 - Most of ECL TCs are vetoed by
 - Threshold cut and Timing selection
 - No output from “ECLDigitCalibrator” : 10751 / 23M (event)
 - No fired Xtal but TRG TC fired : 16K (TC) / 23M (event)

Corresponding ECL TC energy
Cosmic data analysis (1) (cont’d)

- Total Energy: Mis-matching 5.9%
Cosmic data analysis (1) (cont’d)

- Total Energy: Mis-matching 5.9%

Region: a + b+ c

Region: a

30 events
Cosmic data analysis (2)

- Timing Selection
 - TRG : ~ 1 µs
 - ECL : ± 500 ns

- Consistency check
 - Total TC hit (31546314 : 31.5M)
 - a : ECL TC and TRG TC are matching (29009425)
 - b : ECL TC fired, but no TRG TC hit (857203)
 - Threshold < ECL TC < Threshold + 50 MeV (0.26 GeV) (856954 : 100%)
 - c : TRG TC fired, but no ECL TC hit (1679686)
 - Threshold < TRG TC < Threshold + 50 MeV (0.26 GeV) (1668893 : 99%)
Cosmic data analysis (2) (cont’d)

- Total Energy: Mis-matching 4.5%
Beam data analysis (1)

- **Timing Selection**
 - TRG : Same as ETM
 - ECL : TRG ± 50 ns

- **Consistency check**
 - Total TC hit (3583084 : 3.6M)
 - a : ECL TC and TRG TC are matching (3481251)
 - b : ECL TC fired, but no TRG TC hit (51122)
 - Threshold < ECL TC < Threshold + 50 MeV (0.15 GeV) (49306 : 96%)
 - c : TRG TC fired, but no ECL TC hit (50711)
 - Threshold < TRG TC < Threshold + 50 MeV (0.15 GeV) (49790 : 98%)
 - mis-matching TC = 2.8% (low E region 97.3%)
Beam data analysis (1) (cont’d)

• Total Energy: Mis-matching 1.3%
Beam data analysis (2)

- Timing Selection
 - TRG : ~ 1 µs
 - ECL : ± 500 ns

- Consistency check
 - Total TC hit (3622396 : 3.1M)
 - a: ECL TC and TRG TC are matching (3520916)
 - b: ECL TC fired, but no TRG TC hit (73633)
 - Threshold < ECL TC < Threshold + 50 MeV (0.15 GeV) (73304 : 100%)
 - c: TRG TC fired, but no ECL TC hit (27847)
 - Threshold < TRG TC < Threshold + 50 MeV (0.15 GeV) (27306 : 98%)
 - mis-matching TC = 2.8% (low E region 99.1%)
Beam data analysis (2) (cont’d)

• Total Energy : Mis-matching 1.2%
Summary: Data analysis

- Most of inconsistent events between ECL and TRG are due to
 - 1) ECL Status (ECL Quality & Calibration Status)
 - 2) Timing selection
 - 3) Low Energy (near threshold) → Energy measurement inconsistent.
Backup
Dear Unno-san: here are the numbers from my HLT study for experiment 8 run 1539. The HLT was in monitoring mode for this run.

Existing cluster trigger:
- ≥3 clusters with Ecms > 0.2 GeV, including ≥1 with 0.3 GeV < Ecms < 2 GeV
- cross section = 24.9 nb
- exclusive cross section (i.e. event passes no other filter) = 19.7 nb
- overall generic tau efficiency = 89.5%
- efficiency of cluster triggers for tau pairs = 46.0%

Proposed cluster triggers:
- clusters must satisfy thetaLab > 18.5 deg and thetaLab < 139.3 deg (= trigger thetaID [2, 16])
- ≥4 clusters with Elab > 0.18 GeV, including ≥1 with Elab > 0.3 GeV and none with Ecms > 2 GeV
- OR exactly 3 clusters with Elab > 0.18 GeV, including ≥1 with Elab > 0.5 GeV and none with Ecms > 2 GeV
- cross section = 10.3 nb
- exclusive cross section = 4.9 nb
- overall generic tau efficiency = 87.6%
- efficiency of cluster triggers for tau pairs = 45.9%
The proposed changes reduce the exclusive cluster trigger rate by a factor of four, at the cost of 1.9% in generic tau pair efficiency. On the other hand, as Torben noted, the new configuration has good efficiency for physics events that contain a muon pair plus another cluster, whereas the existing configuration has poor efficiency.

The drop in tau efficiency is from the reduction in the angular acceptance of the trigger, but it is partial compensated by the increased efficiency for minimum ionizing particles.

I also tried a variation in which the 3 cluster trigger was “exactly 3 clusters with $E_{lab} > 0.18$ GeV, including ≥ 2 with $E_{lab} > 0.3$ GeV and none with $E_{cms} > 2$ GeV”. The exclusive cross section increases from 4.9 nb to 5.7 nb, and the tau pair efficiency drops from 87.6% to 87.3%.

The looser variation, exactly 3 clusters with $E_{lab} > 0.18$ GeV, including ≥ 1 with $E_{lab} > 0.3$ GeV and none with $E_{cms} > 2$ GeV” would have better physics efficiency, but the exclusive cross section is 12.6 nb.

- Chris
Cosmic data analysis (2) (cont’d)

• Total Energy : Mis-matching 4.5%
Beam data analysis (1) (cont’d)

- Region (b) : No TRG, but ECL

1) Summary of region (b)
 - condition 1) TRG timing ± 50 ns
 - condition 2) TRG timing
 - Timing selection affect near threshold region

![Graphs showing data distribution for TC E (ECL) in different conditions](image)
Beam data analysis (1) (cont’d)

- Region (c): No ECL, but TRG

- Summary of region (c)
 - Most of ECL TCs are vetoed by
 - Threshold cut and Timing selection
 - No output from “ECLDigitCalibrator” : 0 / 2.2M (event)
 - No fired Xtal but TRG TC fired : 295 (TC) / 2.2M (event)

Corresponding ECL TC energy
Beam data analysis (1) (cont’d)

- Total Energy: Mis-matching 1.3%

Region: a + b + c

Region: a
Beam data analysis (2) (cont’d)

- Total Energy: Mis-matching 1.2%

![Graphs showing energy distributions and matching regions](image-url)