
1/6

Conditions DB ↔ DAQ configuration DB

Mikhail Remnev

2019.08.29

2/6

Motivation

One of main motivations for ECL to keep electronics configuration consistent
with Conditions DB is ShaperDSP logic check procedure in DQM.

amplitude
time
quality

ShaperDSP

All events

waveform
fitting

ECL data quality monitor

~5% of
all events

C++ emulator

?
≠amplitude

time
quality

amplitude
time
quality

waveform
fitting

ShaperDSP and emulator return
different fit results ⇒ corrupted
data. Run must be stopped ASAP.

This check will fail on correct data if:

• DSP coefficients in FPGA != DSP coefficients in DQM.

• Thresholds in FPGA != Thresholds in DQM.

Electronics configuration is also relevant for simulation and reconstruction.

3/6

Updating HLT payloads after changes to the hardware

Workflow during maintenance day

ConditionsDB,
staging_online
Update payloads

ECLCollectors
flash memory

Update DSP data
ECL maintenance

work is done.

(example: Shaper
 board is replaced)

ConditionsDB, online
Online integration

convener updates GT

HLT
uses wrong

payloads

HLT
uses correct

payloads
Generate new
payloads for

energy calibration,
time calibration,

DSP coefficients.

• This means that DQM will use invalid payloads for some time period.
Logic test will fail, HLT software trigger will use outdated calibrations.

• Note: it is not possible to get actual version of DSP data in DQM.

• From my experience, online integration convener usually updates the
database very quickly, so it is not a major problem.

• Still, it might be useful to consider backup options, in case both conveners
are unavailable.

I Authorize run coordinator to approve staging requests?

4/6

ECL configuration in DAQ DB

• To reduce complexity in configuration management, each configuration
type has single configuration object for all COPPERs (instead of 52
objects, as it has been initially).

• The following naming schema has been introduced for setting
sector-specific configuration:

all-thr1 : 30 # threshold 1 = 30 for all channels.

barr-thr1 : 31 # threshold 1 = 31 for barrel channels.

fwd-thr1 : 32 # threshold 1 = 32 for forward endcap channels.

bwd-thr1 : 33 # threshold 1 = 33 for backward endcap channels.

• Runtype-independent information is stored in separate DBObjects.

Basic
parameters

Energy
thresholds

Attenuator
coefficients

runtype-specific cfg

Energy
calibration

(from conditionsDB) (from ECLTRG)runtype-specific cfg

• DBObjects in cursive need to be synchronized back to ConditionsDB.

5/6

Management of ECL energy thresholds

DAQ DB

Energy
thresholds

Energy
calibration

ConditionsDB

Energy
calibration

Energy
thresholds

on ECL expert
request

on threshold
writing to FEE

• There is one manually defined conversion from ConditionsDB to DAQ DB
and one conversion from DAQ DB to ConditionsDB.

• Same procedures are prepared for attenuator coefficients.

• Similar procedures are planned for DBObjects with run-specific
configuration.

6/6

DBObjects ↔ ConditionsDB payloads

If other people also do something similar, it might be worthwhile to have a
standardized procedure for data transfer between two databases.

DBObjects 7→ ConditionsDB payloads

• Payload with key→value container.

• Then conversion will work even after major changes in DBObject structure.
(ECL configuration DBObject have changed a lot since the start of
Phase 3, in response to firmware updates and WF saving problems)

ConditionsDB payloads 7→ DBObjects

• TBufferJSON::ConvertToJSON(obj) can probably be used...

• Are there any other possible solutions?

• Both of these conversion procedures might be useful, but not truly
necessary for ECL.

• Will this conversion scheme be useful for anyone else?

7/6

backup

8/6

Changing DAQ DB configuration based on run type

• To reduce human error, some parts of ECL configuration are adjusted
automatically based on run type.

// On RC_LOAD

if (run_type_from_RUNCONTROL == "debug") {

save_waveform_data = 0;

} else {

save_waveform_data = 1;

}

• This feature is useful but such parameters are currently hardcoded in
daq slc/copper/ecl/src/ECLFEE.c as runtype-dependent.

• Is something like this used by other subdetectors?

• One alternative is to increase complexity of configuration structure by
adding extended interpretable statements:

waveform saving : ”runtype == ’debug’ ? 0 : 1”

