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Motivation

One of main motivations for ECL to keep electronics configuration consistent
with Conditions DB is ShaperDSP logic check procedure in DQM.
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This check will fail on correct data if:

• DSP coefficients in FPGA != DSP coefficients in DQM.

• Thresholds in FPGA != Thresholds in DQM.

Electronics configuration is also relevant for simulation and reconstruction.
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Updating HLT payloads after changes to the hardware

Workflow during maintenance day
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• This means that DQM will use invalid payloads for some time period.
Logic test will fail, HLT software trigger will use outdated calibrations.

• Note: it is not possible to get actual version of DSP data in DQM.

• From my experience, online integration convener usually updates the
database very quickly, so it is not a major problem.

• Still, it might be useful to consider backup options, in case both conveners
are unavailable.

I Authorize run coordinator to approve staging requests?
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ECL configuration in DAQ DB

• To reduce complexity in configuration management, each configuration
type has single configuration object for all COPPERs (instead of 52
objects, as it has been initially).

• The following naming schema has been introduced for setting
sector-specific configuration:

all-thr1 : 30 # threshold 1 = 30 for all channels.

barr-thr1 : 31 # threshold 1 = 31 for barrel channels.

fwd-thr1 : 32 # threshold 1 = 32 for forward endcap channels.

bwd-thr1 : 33 # threshold 1 = 33 for backward endcap channels.

• Runtype-independent information is stored in separate DBObjects.

Basic
parameters

Energy
thresholds

Attenuator
coefficients

runtype-specific cfg

Energy
calibration

(from conditionsDB) (from ECLTRG)runtype-specific cfg

• DBObjects in cursive need to be synchronized back to ConditionsDB.
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Management of ECL energy thresholds
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• There is one manually defined conversion from ConditionsDB to DAQ DB
and one conversion from DAQ DB to ConditionsDB.

• Same procedures are prepared for attenuator coefficients.

• Similar procedures are planned for DBObjects with run-specific
configuration.
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DBObjects ↔ ConditionsDB payloads

If other people also do something similar, it might be worthwhile to have a
standardized procedure for data transfer between two databases.

DBObjects 7→ ConditionsDB payloads

• Payload with key→value container.

• Then conversion will work even after major changes in DBObject structure.
(ECL configuration DBObject have changed a lot since the start of
Phase 3, in response to firmware updates and WF saving problems)

ConditionsDB payloads 7→ DBObjects

• TBufferJSON::ConvertToJSON(obj) can probably be used...

• Are there any other possible solutions?

• Both of these conversion procedures might be useful, but not truly
necessary for ECL.

• Will this conversion scheme be useful for anyone else?
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backup
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Changing DAQ DB configuration based on run type

• To reduce human error, some parts of ECL configuration are adjusted
automatically based on run type.

// On RC_LOAD

if (run_type_from_RUNCONTROL == "debug") {

save_waveform_data = 0;

} else {

save_waveform_data = 1;

}

• This feature is useful but such parameters are currently hardcoded in
daq slc/copper/ecl/src/ECLFEE.c as runtype-dependent.

• Is something like this used by other subdetectors?

• One alternative is to increase complexity of configuration structure by
adding extended interpretable statements:

waveform saving : ”runtype == ’debug’ ? 0 : 1”


