The Belle II Pixel Vertex Detector

Belle II Germany Meeting 20th-22st September 2021 Arthur Bolz, DESY

DESY.

Outline

Introduction

• SuperKEKB, Belle II, and the Belle II Vertex Detector

The Pixel Vertex Detector (PXD)

- Working Principles
- PXD Modules and Calibration
- PXD Detector

PXD in Belle II in 2021

- PXD Operation and Performance
- VXD Performance
- Operational Challenges: backgrounds, beam-losses, irradiation and aging

PXD2 2022 Upgrade

• Future of PXD

Setting the Scene

Belle II Vertex Detector (VXD)

• Silicon Vertex Detector (SVD)

- 4 layers of 2-sided silicon strips
- o r ≤ 140 mm

• Pixel Vertex Detector (PXD)

- 2 layers at radii 14 mm and 22 mm
- 8 inner + 12 outer module-pairs ("ladders")
 - ⇒ only 8 (inner) + 2 (outer) ladders installed
- \circ ~7.7 x 10⁶ pixels
- \circ ~0.21 % X₀ / layer material budget

acceptance

 \circ 17° < Θ < 150°

p_T ≥ 40 MeV

Tracking at SuperKEKB

Challenges

- increased backgrounds with instantaneous lumi
 - continuous injection of "noisy" bunches
 ⇒ beam lifetime only few minutes (50 Hz, 10 μs revolution, 4 ms cooldown ⇒ present 20 % of time)
 - "Synchrotron", "Touschek intra-bunch scattering", "Bhabha", "2 photon"...
 - challenge for detector/tracking overall (challenges for PXD discussed explicitly later)
- smaller Lorentz boost (7 on 4 GeV vs KEKB 8 on 3.5 GeV)

Track reconstruction and PXD role

- PXD DAQ separated from rest of Belle II
- (HLT) track finding seeded in CDC (pT > 100 MeV) or else SVD
- **PXD** hits used in offline track fit \rightarrow **improved vertex resolution**
- Regions of Interest (ROI) filtering:
 - HLT: extrapolates tracks to ROIs on PXD for readout to reduce data rate
- PXD layer one crucial for *impact parameter resolution*
- PXD layer two (will be) crucial for handling background

Outline

Introduction

• SuperKEKB, Belle II, and the Belle II Vertex Detector

The Pixel Vertex Detector (PXD)

- Working Principles
- PXD Modules and Calibration
- PXD Detector

PXD in Belle II in 2021

- PXD Operation and Performance
- VXD Performance
- Operational Challenges: backgrounds, beam-losses, irradiation and aging

PXD2 2022 Upgrade

• Future of PXD

PXD Working Principle

DEPFET pixels: depleted p-channel field effect transistors

principle:

- Field Effect Transistor (FET) on top of fully depleted silicon bulk
 - gate voltage regulates source→drain current
- internal gate: deep n-implant below FET gate
 - o collects free electrons to modulate drain current
- periodic active clearing of internal gate achieved via *clear implant* (n+) and "punch through" mechanism

characteristics:

- + fast charge collection (O(ns))
- + internal amplification $g_q = \frac{\partial I}{\partial q} \approx 500 \frac{pA}{e^-}$
- + high signal-to-noise ratio
- + low power consumption
- + thin sensors (75 μm in active region: DEPFET matrix)
- non-destructive signal readout

PXD Working Principle

DEPFET pixels: depleted p-channel field effect transistors

principle:

- Field Effect Transistor (FET) on top of fully depleted silicon bulk
 - gate voltage regulates source→drain current
- internal gate: deep n-implant below FET gate
 - o collects free electrons to modulate drain current
- periodic active clearing of internal gate achieved via *clear implant* (n+) and "punch through" mechanism

characteristics:

- + fast charge collection (O(ns))
- + internal amplification $g_q = \frac{\partial I}{\partial q} \approx 500 \frac{pA}{e^-}$
- + high signal-to-noise ratio
- + low power consumption
- + thin sensors (75 μm in active region: DEPFET matrix)
- non-destructive signal readout

PXD Sensors

Layout

- matrix
 - $\,\circ\,$ 250x768 pixels, pixel size 50x(55-85) μm^2
 - mechanically self supporting, thinned to 75 μm (active region)
- ASICs
 - \circ Switchers \rightarrow DEPFET control
 - \circ *DCD* \rightarrow 256 channel ADC
 - \circ DHP \rightarrow data processing
- radiation hard sensors and ASICs

Operation

DESY.

- rolling shutter read-out \rightarrow low power 50 kHz \rightarrow 20 µs integration time (2x SKB revo. cycle)
- design: 1% occupancy (layer 1)
 3 % occupancy limit (DHP, DAQ, tracking)
- power dissipated mainly in ASICS at end of stave
 2 phase CO₂ cooling

PXD Modules

Calibration

- sensors characterized before installation
 - continuous optimization of working points needed during operation
- median drain current pedestals stored on DHP for zero suppression
- pedestal optimization on DCD
 - pedestal compression via switchable input currents per pixel
 - noise reduction via Analog Common Mode Correction

noise distribution

pedestals calibrated sensor

Clear pulse

signal & pedestal

sample

signal

(d ▲ b)

pedestal currents uncalibrated sensor

PXD in Belle II

PXD assembly

- mechanical ladder frame SCB
- provide cooling via 2-phase CO₂ and forced N₂ flow

L2_029 +Y

fwd

Installation 2018 at KEK

- PXD + BP + SVD marriage
- VXD installation in

Outline

Introduction

• SuperKEKB, Belle II, and the Belle II Vertex Detector

The Pixel Vertex Detector (PXD)

- Working Principles
- PXD Modules and Calibration
- PXD Detector

PXD in Belle II in 2021

- PXD Operation and Performance
- VXD Performance
- Operational Challenges: backgrounds, beam-losses, irradiation and aging

PXD2 2022 Upgrade

• Future of PXD

PXD Performance

Signal and noise

- noise performance < 1 ADU (~200 e⁻)
- at a SNR of ~30 50
- homogeneous noise and signal response across module matrix

SNR MPV

backward forward modules

DESY.

VXD Performance

- precise measurements of decay vertices crucial for time dependent measurements
- example D meson lifetime measurement: [arXiv:2108.03216]
 - Belle II proper time resolution ~2x better than Belle (despite SuperKEKB operating at smaller Lorentz boost compared to KEKB/Belle)
 - \circ precision better than world average \rightarrow yet to be improved (stat. dom.)
 - largely thanks to PXD and smaller beam pipe diameter

Y(4S) Rest of Events (ROE) $D(100 \ \mu m)$ Δz_{boost} B^0_{sig} D^{*-}

Backgrounds

- what is background?
 - synchrotron radiation,
 - lost electrons or whole beams inducing secondary particles with pipe or restgas
 - o ...
- why important?
 - can deteriorate performance (fake hits)
 - contributes to occupancy (in particular during injections) \rightarrow 1%/3% limits not hit yet (on avg)
 - \circ contributes to irradiation \rightarrow aging (slow irradiation) or even damages (fast irradiation)

Beam loss events

- reasons not fully clear
 - unstable beams due to dust particle collisions?
 - glitches of accelerator components?
- not always detected early enough to safely dump beams (min 40 μ s delay error \rightarrow dump)
 - collimator damage, QCS (superconducting final focussing magnets) quenches, DCU damages, ...,

impact on PXD

- large instant radiation dose before beam could be dumped (~40 μs splash, total dose unknown)
- permanent damage: dead switcher gates
- exact failure mechanism still under study
 - radiation studies at MAMI: problem localized in the switcher at clear & gate regulators (<u>cf Jannes' talk</u>)
- mitigation procedures still under study
 - SuperKEKB + Belle II: earlier detection ("CLAWS" <u>cf Hendrik's talk</u>) and faster beam dump
 - PXD: possibility of fast emergency power off (could also do harm on its own)
- **DESY** (updated switcher design)

LER collimator damage on Nov 15 '20

layer one occupancy before/after beam loss in May '21

DCU Dose

BP_FW_35 1059.4 mm

Beam loss events

- reasons not fully clear
 - o unstable beams due to dust particle collisions?
 - glitches of accelerator components?
- not always detected early enough to safely dump beams (min 40 μ s delay error \rightarrow dump)
 - collimator damage, QCS (superconducting final focussing magnets) quenches, DCU damages, ...,

impact on PXD

- large instant radiation dose before beam could be dumped (~40 μs splash, total dose unknown)
- permanent damage: dead switcher gates
- exact failure mechanism still under study
 - radiation studies at MAMI: problem localized in the switcher at clear & gate regulators
- mitigation procedures still under study
 - SuperKEKB + Belle II: earlier detection ("CLAWS") and faster beam dump
 - PXD: possibility of fast emergency power off (could also do harm on its own)
- **DESY** (updated switcher design)

LER collimator damage on Nov 15 '20

DCU Dose 2021-05-10_14-26-22_99838

layer one occupancy before/after beam loss in May '21

Synchrotron radiation

- interaction region designed to avoid direct SR photons hitting central Be beam pipe
- still: large SR background observed in several -x modules after change of optics
 - dominated by low energy, single pixel clusters (<10 keV)
 - appear during HER injections (\rightarrow large betatron oscillations during cooldown)
 - origin: back-scattering photons from SR fan hitting +x edge of Ti beam pipe
- results in high localized hit density
 - inhomogeneous module irradiation
 - deterioration of clustering and tracking

mitigation

- small modification of HER beam orbit
- new modified beam pipe w/ additional gold plating to be installed with PXD 2022 update

Radiation effects: threshold shift

- radiation damages oxide layer
 - causes shift of MOSFET threshold voltage
 - compensated by continuous adjustment of gate voltage

MPV $\sim g_q \sim \sqrt{I_{\rm D}} \sim (U_{\rm Gate} - U_{\rm Threshold})$

• X-ray radiation campaign @ 200 krad/h:

- integrated dose in PXD
 - rough estimate < 20 kGy until end of 2020
 - more precise/2021 measurements in progress

TID per module

estimate via DCU and (mean) PXD occupancy

Radiation effects: increasing hv currents

- observe increase in HV currents of some modules
 - some modules reached power supply limits
 - $\circ~$ can not reach set voltage \rightarrow worse SNR and efficiency
- some annealing during (beam off / HV on) and (beam on / HV off) times
- expect currents saturate at certain dose
- mitigation by modifying power supplies → higher current limits

hv Current in PEAK vs Time

lab x-ray irradiation studies

PXD modules around here

(cf Georgios' talk)

interpretation

charge-up effect at handle wafer bond oxide and avalanches at bulk

Backgrounds: injection

DESY.

- SuperKEKB is operated in top-up mode: continuous injection up to 50 Hz
 - $\,\circ\,$ at design luminosity, Touschek effects limit beam lifetime to few mins
 - injected bunches produce high background rates, damping takes few ms
 - mitigation: full veto (all BII detectors) + gated veto (all but PXD)
- PXD cannot halt data collection (default operation):
 - $\,\circ\,$ 20 μs integration time vs 10 μs beam revolution time
 - injection spikes can saturate DAQ \rightarrow not yet critical (partial data loss at sub-permille level)
 - $\circ\,$ goal is to avoid by operating in PXD gated mode ightarrow avoid noise of passing injected bunch

Gated mode

- "gated mode" can blind PXD modules when noisy bunches pass
 - newly created charges are not collected
 - charges at internal gate are preserved
- challenges:
 - switching into gated mode results in pedestal fluctuations
 - produce noise on their own
 - \rightarrow still larger than injection noise
 - synchronization with injections
 - optimizing module parameters for GM

B. Spruck

1/2 readout cycle: 10us

real GM "efficiencies"

- 2021 dedicated runs for PXD GM studies
 - inconsistent module behaviour
 - GM not ready yet
 - nor useful for current injection conditions

DU

₹

[<u>R. Karl]</u>

"gaited mode"

Outline

Introduction

• SuperKEKB, Belle II, and the Belle II Vertex Detector

The Pixel Vertex Detector (PXD)

- Working Principles
- PXD Modules and Calibration
- PXD Detector

PXD in Belle II in 2021

- PXD Operation and Performance
- VXD Performance
- Operational Challenges: backgrounds, beam-losses, irradiation and aging

PXD2 2022 Upgrade

• Future of PXD

	Task Name	Start Finish			Qtr 3, 2021			Qtr 4, 2021			Qtr 1, 2022			Qtr 2, 2022	
				Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	
	PXD2	Wed 01/04	/2Fri 13/05/22											-	
	Sensor production	Wed 01/04	/2Fri 03/09/21				1								
	PXD9-20	Wed 01/04,	/2Wed 01/04/2												
ł	PXD9-21a: 6 wafers (first backup batch)	Mon 04/05	/2 Fri 02/07/21		h										
5	PXD9-21b: 6 wafers (second backup batch)	Mon 04/05	/2 Fri 03/09/21	1											
5	sensors from PXD9-21a	Fri 02/07/2	1 Fri 02/07/21		🍯 02 Ju	'21									
1	Module assembly	Wed 01/04	/2Fri 12/11/21		-			-							T
1	PXD9-20 batches	Wed 01/04	/2Fri 24/09/21		-									-	T
Э	PXD21-2/3	Wed 01/04	/2Tue 22/12/20												
0	rework	Mon 16/11,	/2Tue 22/12/20												
1	Final PXD21-3 modules	Mon 02/11	/2Fri 24/09/21				1								
2	FC, SMD, possibly rework	Mon 02/11,	/2Wed 31/03/2												Т
3	Kapton attachment, wirebonding	Thu 04/02/	2:Wed 14/04/2												T
4	Delivery new poly-Si plate	Fri 02/04/2	1 Fri 21/05/21			1									T
5	FC Test L2 module and W57 IB+L2 modules	Mon 09/08	/2 Fri 03/09/21			*	5								T
6	Kapton Test L2 module and W57 IB+L2 mod	Mon 13/09	/2 Fri 24/09/21												t
7	PXD9-21 batches	Mon 06/09	/2Fri 12/11/21				-	-							
8	FC, SMD, possibly rework	Mon 06/09	/2 Fri 24/09/21												T
9	Kapton attachment	Mon 27/09	/2 Fri 12/11/21					<u> </u>							T
0	Module characterization BN/DESY/GÖ/HLL/MPP	Thu 01/10/	2(Fri 03/12/21		-	-		-	-	1					T
1	ongoing PXD9-20 testing	Thu 01/10/.	2(Fri 18/12/20												
2	final PXD9-20 testing	Mon 22/02	/2 Fri 20/08/21					_							T
3	PXD9-21 testing	Mon 18/10	/2 Fri 03/12/21						-	5					T
4	All Modules done	Fri 03/12/2	1 Fri 03/12/21							🍯 03 D	ec '21				-
5	Ladder assembly	Fri 27/11/2	0 Fri 18/02/22			-	-		-	-	-				T
6	Gluing campaign 20-Dec	Fri 27/11/2	0 Fri 11/12/20												T
7	Gluing campaign 21-1	Mon 15/03	/2 Fri 21/05/21									1			1
8	Gluing campaign 21-2	Mon 03/01	/2 Fri 18/02/22						_		•				
9	Half Shell Assembly	Fri 09/04/2	1 Fri 13/05/22		-	-	-							-	+
0	Testing of L2 modules	Fri 09/04/2	1 Fri 02/07/21												T
1	HS1	Mon 03/05	/2 Fri 03/12/21					1			-			1	T
2	HS1 Test at DESY	Mon 06/12	/2 Fri 25/02/22							T		-			
3	Half Shell 1 ready	Fri 25/02/2	2 Fri 25/02/22										25 Feb	22	
4	HS2	Mon 21/02,	/2 Fri 04/03/22												T
15	HS2 test at DESY	Mon 07/03	/2 Fri 13/05/22										-		
6	Half Shell 2 ready	Fri 13/05/2	2 Fri 13/05/22												T
17	Ship Half Shells to KEK	Fri 13/05/2	2 Fri 13/05/22												T

PXD 2022

Building a 2nd PXD

PXD remains incomplete

- only 10/20 ladders (8/8 inner, ½ broken, 2/12 outer) installed
 - not enough good modules available pre-2018
- good vertexing performance so far
 - but not guaranteed for higher future lumi \Rightarrow higher backgrounds

ongoing efforts to build 2nd, complete PXD2

- same technology but improved manufacturing processes + time
- module production & HS assembly & testing ongoing (with some delays)
- PXD2 to be installed during next long shutdown 2022+X (L_{int}, SKB safety, 🤓 uncertainty, delays w/ BP production)

PXD 2022

half shells: assembly testing

x 2

VXD:

PXD to beam pipe PXD+SVD marriage testing installation • several production and characterization campaigns in 2021

- still more modules needed & are being produced at HLL/MPP
- characterization campaign foreseen in fall
- enough (good) ladders for HS1
- glueing campaign of new modules for HS2 foreseen for January
- first dummy HS (w/ dead modules) was produced at MPP and tested at DESY
- several issues observed and investigated
- 2nd dummy HS in preparation \rightarrow final dress test
- assembly of hot HS1 stalled to await results of dummy HS studies → planned to be finished by December
- HS source setup teststand under commissioning at DESY
- HS2 assembly to be finished in early spring 2022
- delays but on track for installation at KEK in July 2022
- long shutdown under discussion: balance of interest w/ lumi collection and machine studies

L1 la	dders						
(L35 L37 L56 L57 L58 L61 L62 L63 L64 L65	W04_IF W05_IF W37_IF W10_IF W52_IF W53_IF W53_IF W54_IF W56_IF	W04_IB W42_I8 W46_I8 W46_I8 W55_I8 W55_I8 W53_I8 W54_I8 W52_I8 W52_I8	C/D B/A Ph II/ B/B A/A A/A B/B A/A A/A A/A	DESY) KEK L42 L44 L45 L46 L47 L48 L49 L50 L51 L52 L53 L54 L55	- water dama w02_0F1 W32_0F1 W33_0F1 W33_0F2 W46_0F1 W03_0F2 W46_0F2 W46_0F2 W45_0F1 W43_0F1 W45_0F2 W45_0F2 W45_0F2 W37_0F1	ge W03_081 W32_082 W42_081 W46_082 W45_082 W46_081 W08_081 W08_081 W08_081 W04_081 W04_081 W10_081 W10_081 W10_081	?/B A/A A/A A/A A/A A/A A/A A/A A/A A/A A

Conclusion

PXD status

- very good performance of PXD and stable operation in 2020/2021
- setbacks from beam loss events with high instantaneous dose rate
 - damages to detector
 - $\circ\,$ so far have remained out of full control and biggest risk for detector
- improved / automated operation and calibration procedures for reduced load on shifters
- still lot of effort needed to operate detector, in particular
 - in face of further damages from SKB beam-losses
 - in face of many experienced scientists having left PXD in 2021
- big thanks to those who make it possible!

PXD future

- great efforts from various institutions to prepare new PXD
 - remains difficult even with experience from PXD1
 - also here, knowledge transfer and COVID pose big challenges
- nonetheless still on track for installation in summer 2022

Backup

Setting the Scene

Super KEKB

- asymmetric e⁺e[−] collider
- $E_{cm} = M_{\gamma(4S)} \approx 10.58 \text{ GeV} \Rightarrow "B \text{ factory"}$
- goal: $L_{\text{peak}} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
 - "nano-beam" scheme and increased currents
 - $\,\circ\,$ record 3.12 x $10^{34}\,cm^{\text{-2}}\text{s}^{\text{-1}}$ on June 22, 2021

Belle II

- target L_{int}: 50 ab⁻¹ by ~2030/2031
 - physics data-taking w/ full setup since March 2019
 - $\circ~$ 213 fb^{-1} recorded by end of 2021 ab
- upgraded trigger rate: 30 kHz
- upgraded detectors

PXD 2022 Schedule

D	Task Name	Start	Finish		Qtr 3, 2	021		Qtr 4, 2	021		Qtr 1, 2	022		Qtr 2, 2	022
				Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
1	PXD2	Wed 01/0	4/2Fri 13/05/22							_					
2	Sensor production	Wed 01/0	4/2Fri 03/09/21												
3	PXD9-20	Wed 01/04	4/2Wed 01/04/2												
4	PXD9-21a: 6 wafers (first backup batch)	Mon 04/0	5/2Fri 02/07/21		h										
5	PXD9-21b: 6 wafers (second backup batch)	Mon 04/0	5/2 Fri 03/09/21		-										
6	sensors from PXD9-21a	Fri 02/07/3	21 Fri 02/07/21		🍯 02 Ju	21									
7	Module assembly	Wed 01/0	4/2Fri 12/11/21						1						
8	PXD9-20 batches	Wed 01/0	4/2Fri 24/09/21						1					-	
9	PXD21-2/3	Wed 01/0	4/2Tue 22/12/20												
10	rework	Mon 16/1	1/2Tue 22/12/2(
11	Final PXD21-3 modules	Mon 02/1	1/2Fri 24/09/21												
12	FC, SMD, possibly rework	Mon 02/1	1/2Wed 31/03/2												
13	Kapton attachment, wirebonding	Thu 04/02	/21Wed 14/04/2											1	
14	Delivery new poly-Si plate	Fri 02/04/2	21 Fri 21/05/21			1									
15	FC Test L2 module and W57 IB+L2 modules	Mon 09/08	8/2 Fri 03/09/21												
16	Kapton Test L2 module and W57 IB+L2 mod	Mon 13/0	9/2 Fri 24/09/21												
17	PXD9-21 batches	Mon 06/0	9/2Fri 12/11/21				-								
18	FC, SMD, possibly rework	Mon 06/09	9/2 Fri 24/09/21												
19	Kapton attachment	Mon 27/09	9/2 Fri 12/11/21												
20	Module characterization BN/DESY/GÖ/HLL/MPP	Thu 01/10	/2(Fri 03/12/21							1					
21	ongoing PXD9-20 testing	Thu 01/10	/2(Fri 18/12/20							1					
22	final PXD9-20 testing	Mon 22/0	2/2 Fri 20/08/21		No.				_					1	
23	PXD9-21 testing	Mon 18/10	0/2 Fri 03/12/21							h					
24	All Modules done	Fri 03/12/2	21 Fri 03/12/21							🍯 03 D	ec '21				
25	Ladder assembly	Fri 27/11/	20 Fri 18/02/22		-		-		-			1			
26	Gluing campaign 20-Dec	Fri 27/11/2	20 Fri 11/12/20											1	
27	Gluing campaign 21-1	Mon 15/03	3/2 Fri 21/05/21									1			
28	Gluing campaign 21-2	Mon 03/0	1/2 Fri 18/02/22							-	•	the second second			
29	Half Shell Assembly	Fri 09/04/	21 Fri 13/05/22												-1
30	Testing of L2 modules	Fri 09/04/2	21 Fri 02/07/21												
31	HS1	Mon 03/05	5/2 Fri 03/12/21							1					
32	HS1 Test at DESY	Mon 06/12	2/2 Fri 25/02/22									-			
33	Half Shell 1 ready	Fri 25/02/2	22 Fri 25/02/22										25 Feb	22	
34	HS2	Mon 21/0	2/2 Fri 04/03/22												
35	HS2 test at DESY	Mon 07/03	3/2 Fri 13/05/22												
36	Half Shell 2 ready	Fri 13/05/2	22 Fri 13/05/22												13
37	Ship Half Shells to KEK	Fri 13/05/2	22 Fri 13/05/22												13

PXD Working Principle

DEPFET: operational States

- pixel state changed by regular change of *gate* and *clear* voltages
 - gate on/off (-2.5 V / 3 V vs Source)
 - clear on/off (19 V / 5 V)
- charge collection gate off, clear off:
 - charges drift to internal gate
 - no drain current
- **readout** gate on, clear off:
 - new charges drift to clear
 - stable drain current can be read out
- **clear** gate on, clear on:
 - charges drift from internal gate to clear

4th configuration state also has application

DESY.

PXD Working Principle

DEPFET: depletion and field shaping

- bulk depletion
 - negative backside HV via frontside punch-through contact (~-70 V)
- field shaping
 - *deep p-well* prevents free e⁻⁻ drift to clear
 - o clear gate potential barrier between internal gate and clear
 - *drift voltage* to guide free e^{-−} to internal gate
 - o ...
- bulk (n⁺, V+) and guard (p⁺, V-)
 - structures around whole matrix to keep external charge carriers out

"it's complicated":

PXD modules operated with 24 different voltages (for pixel matrix and ASICS)

50 µm

PXD Modules Production

- 250 x 768 pixels per module
- pixel pitch varies in z-direction
 50 x 55 85 μm²
- best resolution in Belle II forward direction (at 45° incident angle)
- thinned to 75 μm in sensitive area
- mechanically self-supporting
 - thicker end of stave and (perforated) frame
 - host readout and control ASICS

PXD Modules

ASICS

4 x DHP: Data Handling Processor

- sensor, timing, trigger control
- data processing and transmission
 - pedestal correction
 - data reduction (zero suppression)
 - transmission at 1.6 Gbit/s
- TSMC 65 nm

DESY.

- size 4.0 x 3.2 mm²
- rad. hard. provd (100 Mrad)

6 x Switcher: Row Control

- gate and clear signals
- 32 channels control 4 rows each ("gates")
- fast HV ramping for clear
- AMS/IBM HV CMOS 180 nm
- size 3.6 x 1.5 mm²
- rad. hard proved (36 Mrad)

• 4 x DCD: Drain Current Digitizer

- pipeline 8-bit ADC per channel
- 256 input channels
- 92 ns sampling time
- UMC 180 nm
- rad. hard proved (10 Mrad)

 \Rightarrow all 3 custom PXD designs

$20 \ \mu s$

rolling shutter mode

- signals read gate by gate
- read-clear cycle in ~100 ns
 - full integration time 20 μs (1 "frame")
 - twice SuperKEKB revolution time

sampling:

DCDs

- drain currents measured once
- pedestal correction on DHP
- zero suppression:
 - only signals above threshold send out

Module Production

Ladder gluing

- special jig for module handling, glue dispersion, alignment under microscope
- ceramic stiffening rods on backside
- critical step in PXD1 production
 - revised procedure for PXD 2022 avoids touching matrix side of sensors

DESY.

PXD 2022

Activities at DESY: half shell test preparations

92 mn

- from summer / fall 2021 in Hall-West clean room
- preparation ongoing
 - infrastructure, services, mechanics, simulations, ...
- tests to include
 - mechanical studies (mounting half shells on beam pipe mockup)
 - module / half shell operation and calibration
 - irradiation studies with new radiative source setup
- temperature / "dry environment" studies

VXD Performance

Impact parameter and beam profile

• resolution: 1.5 - 2 x better than Belle

	Data	Simulation
$\hat{\sigma}(d_0) \; [\mu { m m}]$	$14.2 \pm 0.1 (\text{stat}) \pm 0.1 (\text{syst})$	$12.5\pm0.1({\rm stat})$
$\hat{\sigma}(z_0) \; [\mu \mathrm{m}]$	$16.1 \pm 0.1 (\text{stat}) \pm 0.1 (\text{syst})$	$13.9\pm0.1({\rm stat})$
the first of the second second second	and the second	

- beam profile:
 - study impact parameter d₀ and resolution in di-muon events
 - $\circ~\phi\text{-dependence}$ gives info about beam profile:

 $\sigma_{d0}^{2} = \sigma_{intr}^{2} + (\sigma_{x} \sin \phi)^{2} + (\sigma_{y} \cos \phi)^{2}$

 $\circ\,$ unfold beam profile \rightarrow consistent with expectations from

 $_{\rm DESY.}$ $^{\rm O}$ more involved methods study $\rm d_{_{01}}$ and $\rm d_{_{02}}$ correlations in 2-track events

[BELLE2-NOTE-PL-2019-011], [BELLE2-PUB-TE-2020-001]

SuperKEKB

Design parameters and injection scheme

	LER	HER	
Energy	4.0	7.0	GeV
Current	3.6	2.6	A
Number of bunches	25	00	
Bunch Current	1.44	1.04	mA
Circumference	30	16	m
Emittance ε_x	3.2(1.9)	4.6(4.4)	nm
Emittance ε_y	8.64(2.8)	12.9(1.5)	\mathbf{pm}
Coupling	0.27	0.28	
Beta function β_x	32	25	$\mathbf{m}\mathbf{m}$
Beta function β_y	0.27	0.30	$\mathbf{m}\mathbf{m}$
Crossing angle $(2\Theta_c)$	8	3	mrad
Beam-beam parameter ξ_x	0.0028	0.0012	
Beam-beam parameter ξ_y	0.0881	0.0807	
Luminosity \mathcal{L}	$8 \times$	10^{35}	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$

PXD Backgrounds @ Belle II

Single-beam backgrounds:

- ▷ **Touschek scattering** \rightarrow scattering of particles within a bunch \rightarrow **Touschek rate** $\propto N_{particles} \times \rho \rightarrow I \times \frac{1}{\sigma_{v} n_{b}}$
- beam-gas scattering → Coulomb scattering and Bremsstrahlung (scattering off gas molecules) → Beam-gas rate ∝ N_{gas molecules} × N_{particles} → P × I × Z²_{eff}

- ▶ synchrotron radiation background → consequence of a radial acceleration of the beam's particles achieved in bending magnets and quadrupoles
- **injection background** \rightarrow continuous injection of charge into beam bunch modifying the beam bunch

Single-beam backgrounds can be mitigated with beam-steering, collimators, and vacuum-scrubbing

Luminosity backgrounds:

▶ two-photon background → leading luminosity background ($e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-e^+e^-$), unlike any of the backgrounds above cannot be reduced!

DESY. | S. Stefkova | ICHEP 2020, 30.07.2020

Page 6

- Development of fast offline performance monitoring with HoT (Hitson-Track) continued
 - provides fast feedback to operation and input for MC tuning
 - can help to define run ranges for official alignment & calibration
- First dose estimate based on analysis of data from new 2 Hz Poisson trigger line in reasonable agreement with expectations from MC considering the additional injection background in data

6

150

o [deg]

HLT and Track Finding

PXD Collaboration

Institutes

- ~20 institutes
 - $\circ~$ dominant German contribution
- ~120 PXD associated Belle II members
- hardware, operation, analysis, ...

- · University of Barcelona, Departament d'Electrònica, C/Marti Franques, 1, 08028-Barcelona, Spain
 - Oscar Alonso, Angel Dieguez
- IHEP Bejing, China
 - Zhen'An Liu, Chunjie Wang, Jingzhou Zhao
- University of Bonn, Physikalisches Institut, Nussallee 12, 53115 Bonn, Germany
 - Patrick Ahlburg, Bruno Deschamps, Jochen Dingfelder, Georgios Giakoustidis, Hans Krüger, Florian Lütticke, Botho Paschen, Christian Wessel
- University of Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
 - Thomas Geßler, Jens Sören Lange, Klemens Lautenbach, Simon P. Reiter
- University of Goettingen, II. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
 Ariane Frey, Harrison Schreeck, Benjamin Schwenker, Philipp Wieduwilt
- DESY, Notkestrasse 85, 22607 Hamburg, Gemany
 - Varghese Babu, Qingyuan Liu, Felix J. Mueller, Carsten Niebuhr, Slavomira Staykova, Maiko Takahashi, Hua Ye
- University of Hamburg, Germany

• ..

- University of Mainz, Germany
 - Matthias Hoek, Bianca Scavino, Björn Spruck, Concettina Sfienti
- University of Heidelberg, Lehrstuhl für Schaltungstechnik und Simulation, Institut für Technische Informatik (ziti), 68131 Mannheim, Germany
 Michael Ritzert
- KIT, Karlsruhe, Institut für Experimentelle Kernphysik, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
 - Martin Heck, Ivan Peric
- Institute of Nuclear Physics, Institute of Nuclear Physics PAN , ul. Radzikowskiego 152, 31-342 Kraków, Poland
 - Andrzej Bozek, Pjotr Kapusta, Bartlomiej Kisielewski
- LMU, Excellence Cluster Universe, Boltzmannstrasse 2, 85748 Garching, Germany
 - Thomas Kuhr, Martin Ritter, Thomas Lück
- TU, Muenchen, Germany
 - Dmytro Levit, Stephan Paul, Andrei Rabusov, Daniel Greenwald
- MPI fuer Physik, Föhringer Ring 6, 80805 München, Germany
 - Vladimir Chekelian, Philipp Leitl, Hans-Günther Moser, Felix Müller, Ketevan Parlagashvili, Markus Reif, Boqun Wang
- MPG Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany
 - Laci Andricek, Martin Hensel, Christian Koffmane, Jelena Ninkovic
- Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, CZ180 00 Praha 8 Troja, Czech Republic
 - Tadeas Bilka, Zdenek Dolezal, Jakub Kandra, Peter Kodys, Peter Kvasnicka
- Instituto de Física de cantabria ,(CSIC-UC), Avd. de los Castros s/n, 39005 Santander, Spain
 - Javier Gonzalez Sanchez, David Moya, Amparo Lopez Virto, Ivan Vila,
- University of Tabuk, Saudi Arabia
 - Rachid Ayad
- Institute for Structural Biology, Tsukuba, Japan
 - ...
- IFIC, Instituto de Física Corpuscular, Edificio Institutos de Investigación, Apartado de Correos 22085, E-46071 Valencia, Spain
 - Marca Boronat, Daniel Esperante, Juan Fuster, Pablo Gomis, Carlos Lacasta, Carlos Mariñas, Marcel Vos