
### Spin Rotator Design for the SuperKEKB High Energy Ring in a **Proposed Polarization Upgrade**





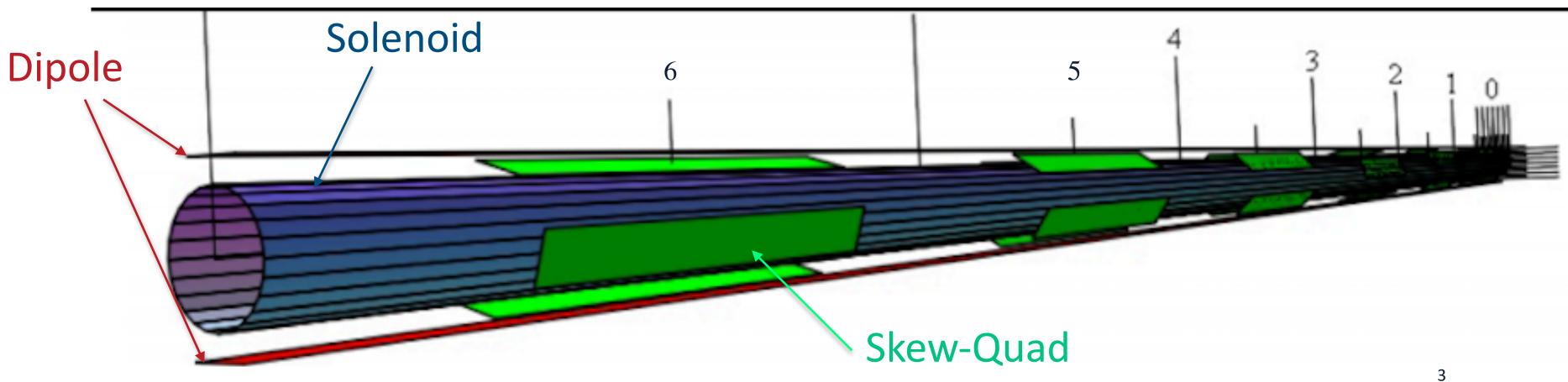
# Yuhao Peng 2021.09.24



# Purpose $A_{LR}^{f} = \frac{\sigma_{L} - \sigma_{R}}{\sigma_{L} + \sigma_{R}} = \frac{sG_{F}}{\sqrt{2\pi\alpha}Q_{f}} g_{A}^{e} g_{V}^{f} \langle Pol \rangle \propto T_{3}^{f} - 2Q_{f} \sin^{2}\theta_{W}$

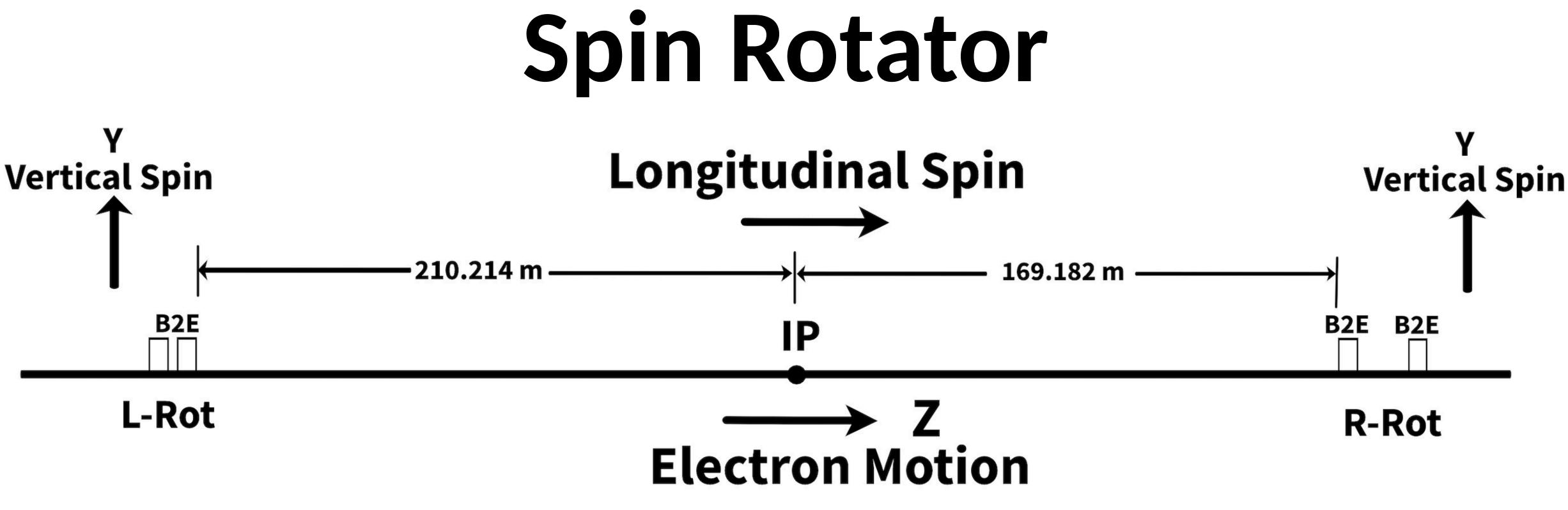
Design a spin rotator for SuperKEKB High Energy Ring, to polarize the spin of the electron beam in the longitudinal direction at the interaction point (IP)

measurements; requires longitudinal polarization at the IP


 Study of asymmetry between the identical processes with different electron beam handedness, which provides precision electroweak





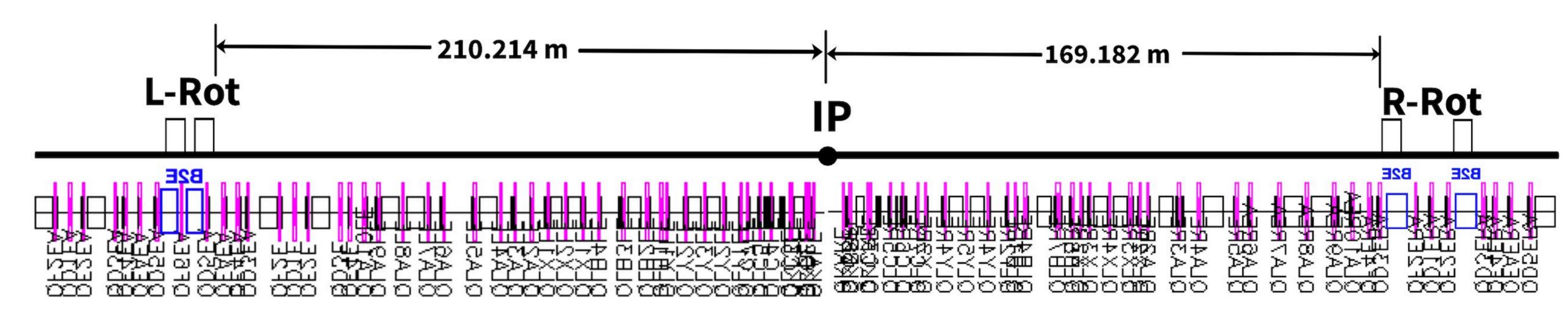

# **Rotator Magnet Structure** • Follows Uli Wienands's idea and direction:

- replace some existing ring dipoles(send) near the IP with the solenoiddipole combined function magnets and maintain the original dipole strength
- Install 6 skew-quadruple on top of each rotator section to compensate for the x-y plane coupling caused by solenoids










**Right rotator(L-Rot)** is to rotate the vertical spin to the longitudinal direction

Left rotator(R-Rot) is to rotate the longitudinal back to vertical







## Overall spin rotation between the L-Rot and the IP: ~212.15° counterclockwise in the x-z plane

Overall spin rotation between the IP and the R-Rot: ~203.32° counterclockwise in the x-z plane





# **Constraints of the Design**

**Transparency**: Need to maintain the original beam dynamics,

## Physical constraints: All new magnets must be manufacturable and installable

- Solenoid strength can not exceed 5 T
- Skew-quad can not exceed 35 T/m

make the spin rotator transparent to the ring as much as possible





# Simulation Tool

- Forest's "Polymorphic Tracking Code" (PTC) is incorporated into it.
- based upon Bmad.
- on lattices
- functions by a modification of the Levenberg-Marquardt algorithm

• **Bmad** is an open-source software library (aka toolkit)created/maintained by David Sagan at Cornell University for simulating charged particles and X-rays. Étienne

• **Tao** is a user-friendly interface to Bmad which gives general purpose simulation,

• **Bmad** via the **Tao** interface is a powerful and user-friendly tool used for viewing lattices, doing Twiss and orbit calculations, and performing nonlinear optimization

• Optimization Algorithm: LMDIF is to minimize the sum of the squares of nonlinear **University** 

7









# **Procedure of the Rot Design and Maintaining Transparency**

- Model the Rotator Magnet with Bmad and do Sanity Check
- Design:
  - Find the appropriate dipoles to replace • Fit the strength of solenoids
- •Transparency:
  - Decouple the x-y plane with skew quads

  - Fix the first order chromaticity by tunning ring sextupoles

•Rematch the optics by tuning ring quads near/in the rotator region • Maintain Tune value Q (Noah Tessema will perform this step)





# **Hkick Simulation**

Rotator modelling requires a combination of dipole and solenoidquadrupole

- Bmad has solenoid-quadrupole but does not have dipolesolenoid-quadrupole
- simulate the dipole(sbend)

Following David Sagan's suggestion, use hkick(horizontal kick) to







# Patch Elements

Sbend is a curved element, but hkick is a straight element

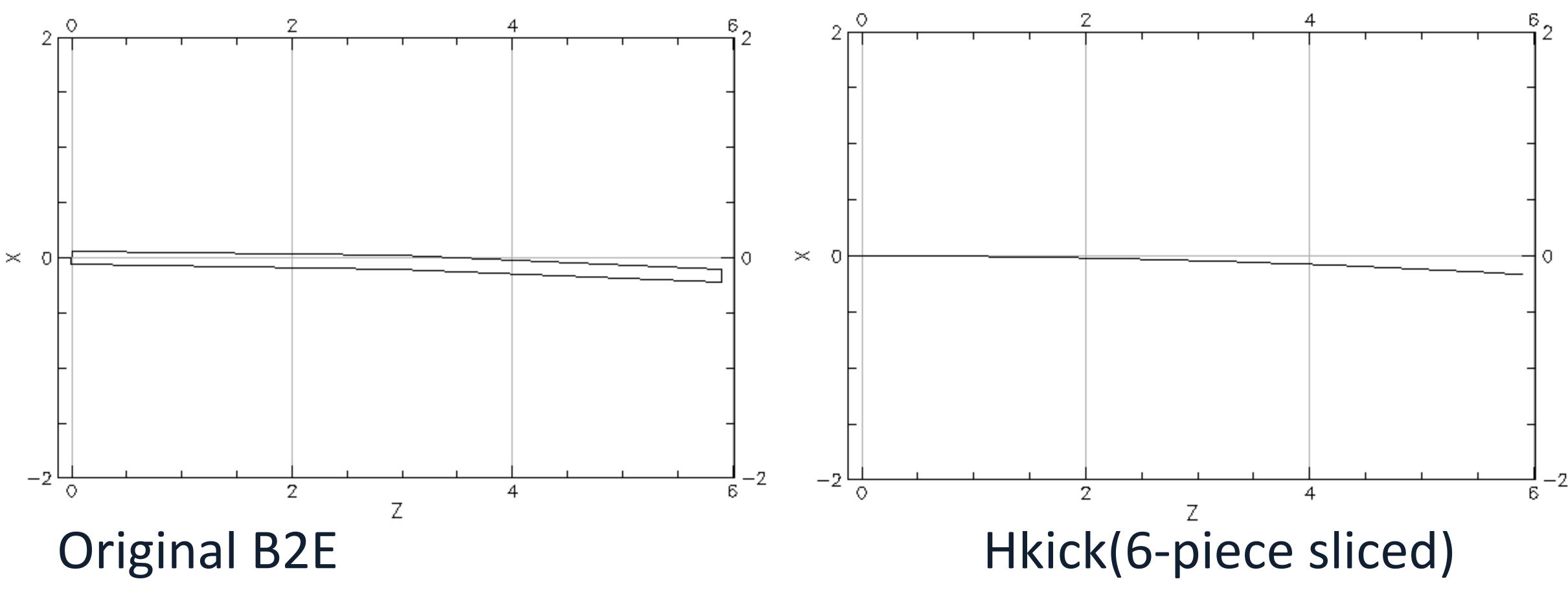
- To simulate the curved element by a straight element, the hkick is sliced into small pieces and use patch elements(xoffset, xpitch, zoffest) to fix the floor coordinate (match the global geometry) at the exit of each slice





# **Hkick Simulation**

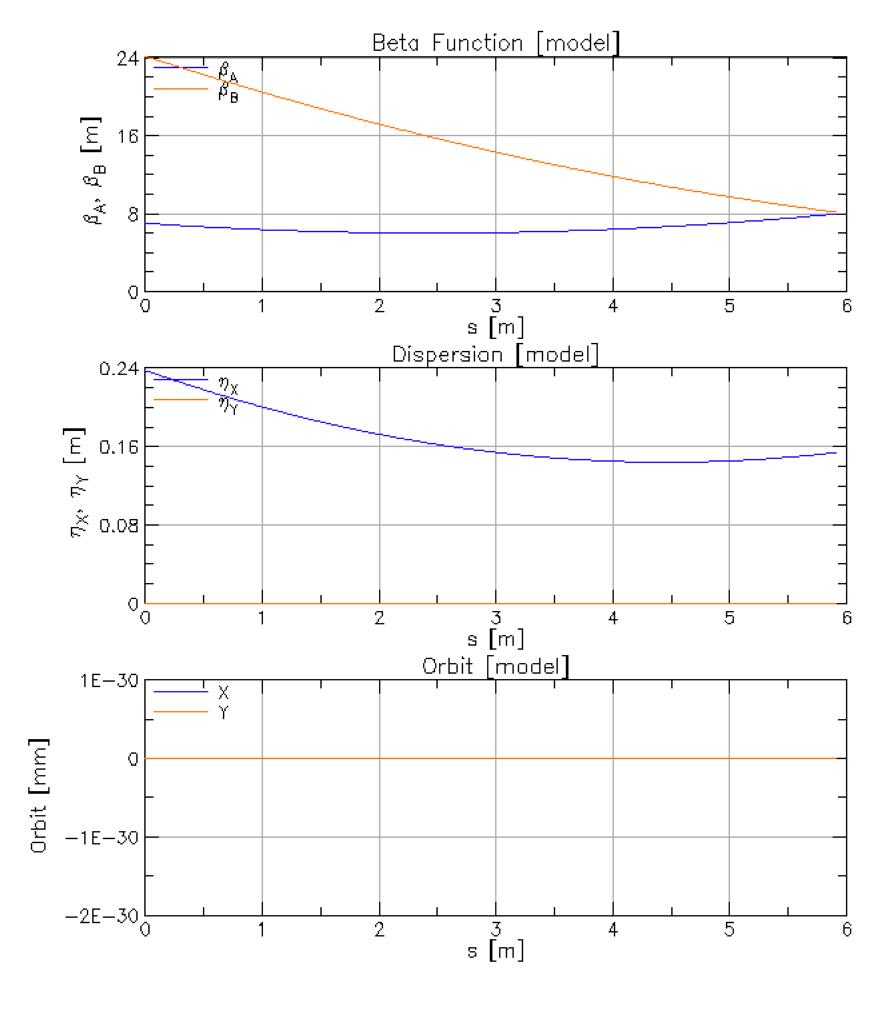
The hkick was initially sliced into 6 pieces to match the number of skew-quads and set the strength (bending angle) and the length to be same as the original B2E


- orbit(floor coord) at the exit of each piece
- Fit the hkick strength to fix the horizontal orbit(x, x')
- exit of every 2nd hkick piece

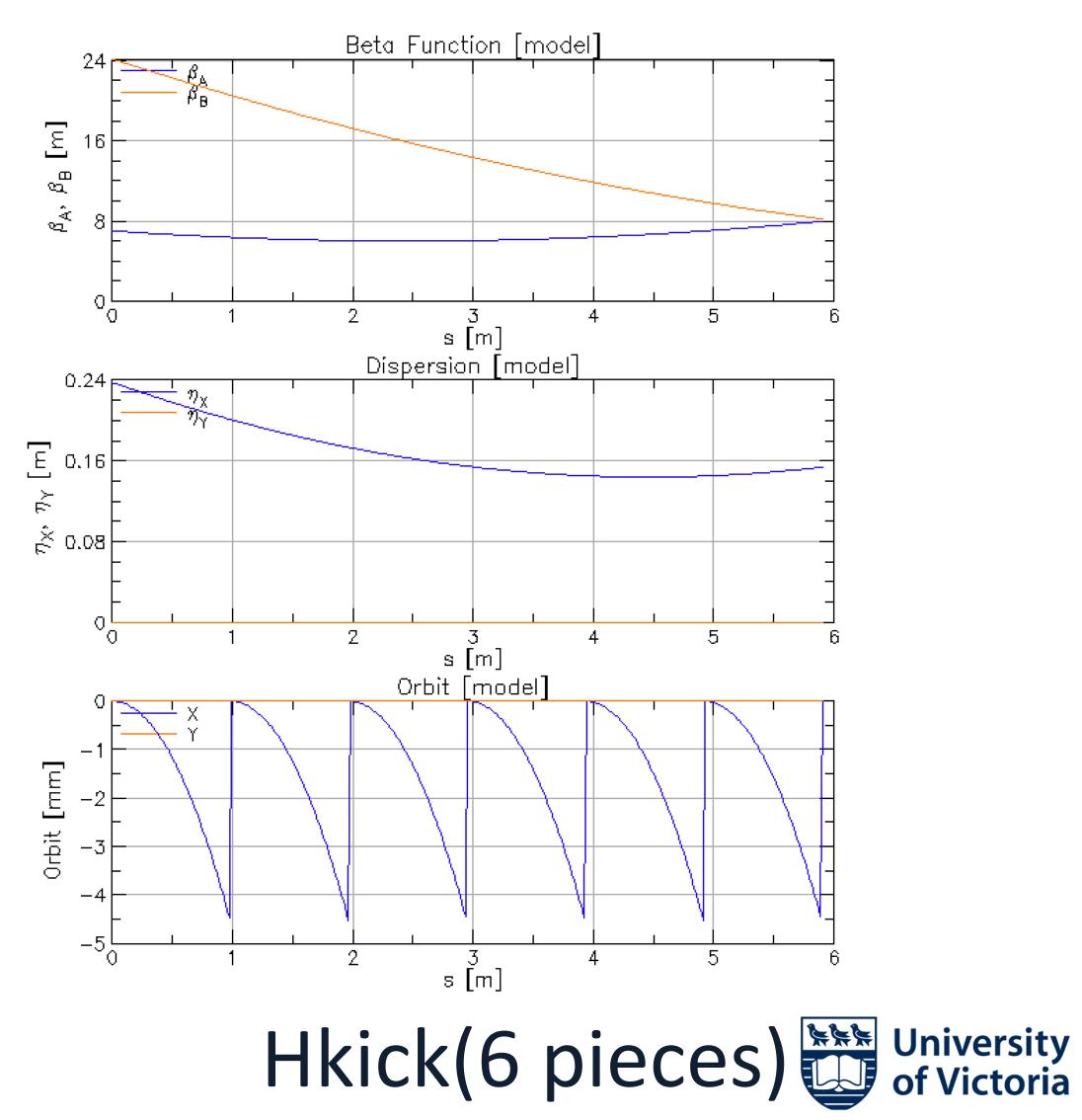
• Fit the patch elements(xoffest, xpitch, zoffset) to fix the reference

• It requires at least two parameters to fix x and x', slightly varying the strength of 6 hkick pieces can fix the horizontal orbit at the University




### Comparison of floor coord between the B2E and the Hkick after fixing the floor coord and orbit








## **Comparison of orbit and Optical functions**



**Original B2E** 



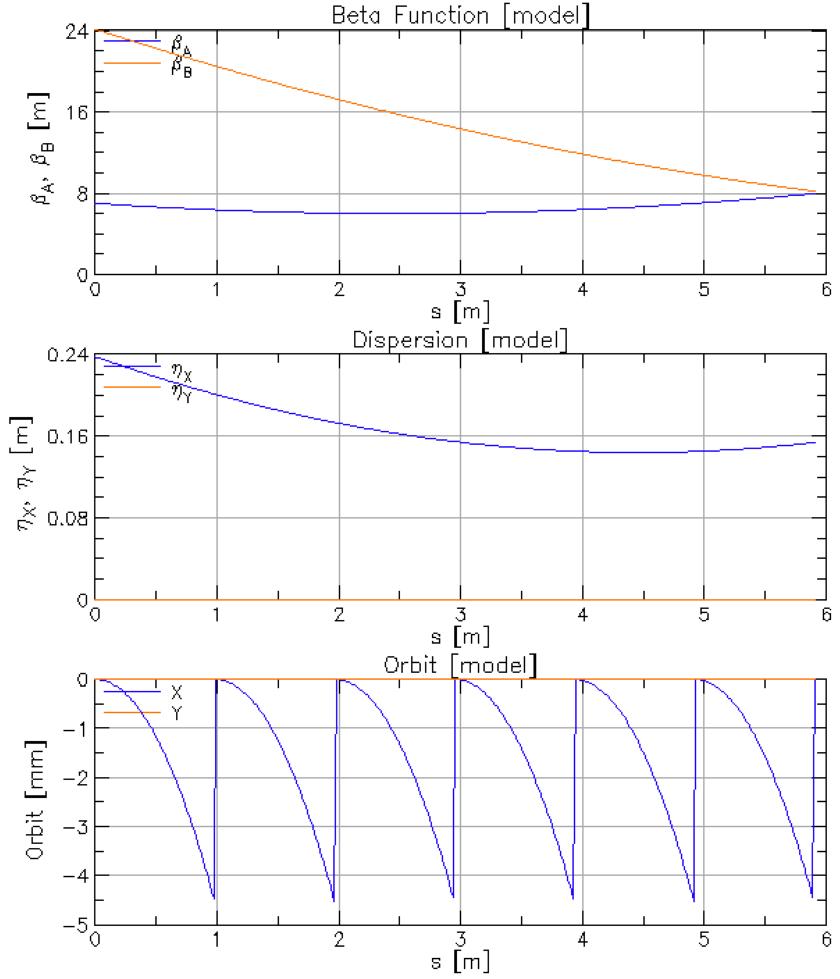


# **Comparison of Spin**

### Original B2E

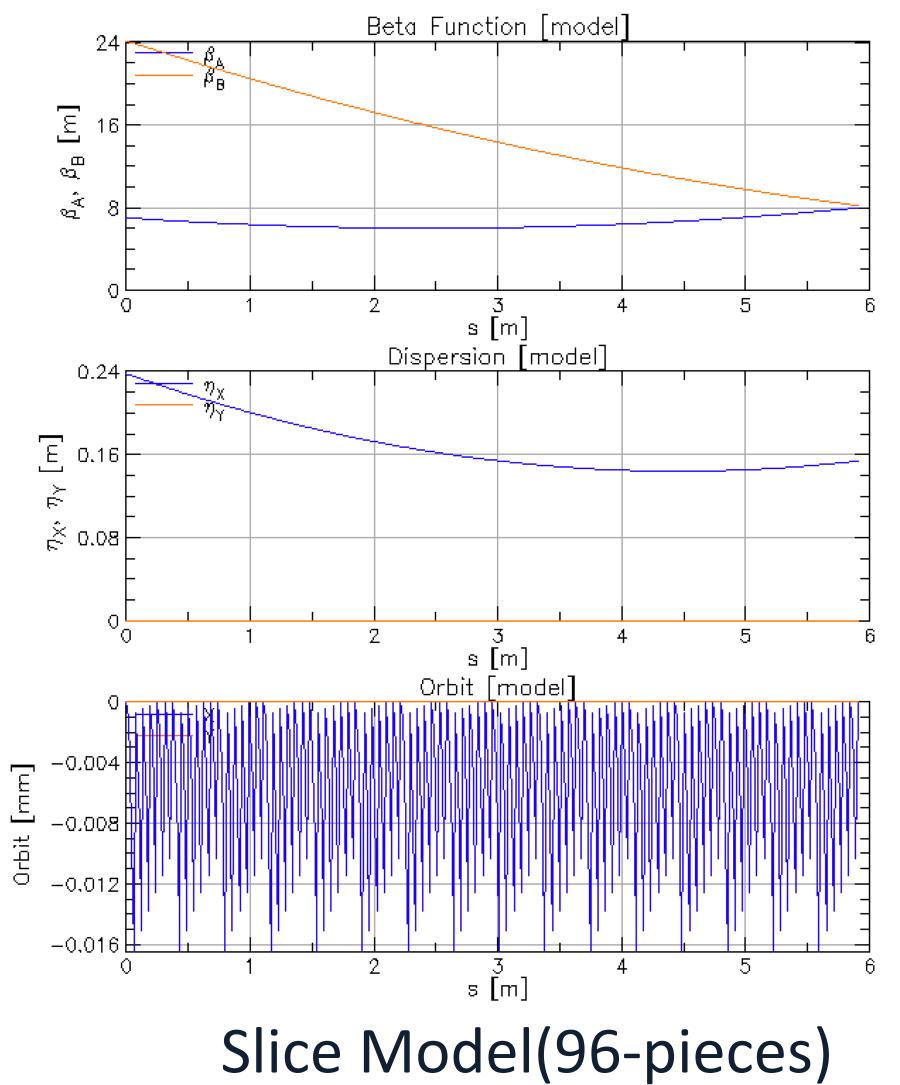
| # | Index | name      | key           | S     |   |
|---|-------|-----------|---------------|-------|---|
|   | 0     | BEGINNING | Beginning_Ele | 0.000 |   |
|   | 2     | END       | Marker        | 5.902 | e |

### Hkick(6 pieces)


| # Index | name      | key           | S     | 1     | spin.x        | spin.y        | spin.z       |
|---------|-----------|---------------|-------|-------|---------------|---------------|--------------|
| 0       | BEGINNING | Beginning_Ele | 0.000 |       | 0.0000000000  | 0.000000000   | 1.0000000000 |
| 13      | END       | Marker        | 5.902 | 0.000 | -0.7748218530 | -0.0000000000 | 0.6321796391 |

1 spin.x spin.y spin.z 0.0000000000 0.0000000000 1.0000000000 \_\_\_ -0.7748218527 0.0000000000 0.6321796395 0.000






# sliced into 16 pieces, 96 in total



Stand-alone Model(6-pieces)

### **Slice Model** In order to reduce the non-physical orbit excursion, each piece of the hkick is further







# **Comparison of Spin**

### Original B2E

| # | Index | name      | key           | S     |   |
|---|-------|-----------|---------------|-------|---|
|   | 0     | BEGINNING | Beginning_Ele | 0.000 |   |
|   | 2     | END       | Marker        | 5.902 | e |

### Hkick(96 sliced)

| # | Index | name      | key           | S     |   |
|---|-------|-----------|---------------|-------|---|
|   | 0     | BEGINNING | Beginning_Ele | 0.000 | _ |
|   | 193   | END       | Marker        | 5.902 | 0 |

1 spin.x spin.y spin.z 0.0000000000 0.0000000000 1.0000000000 \_\_\_ -0.7748218527 0.6321796395 0.000 0.0000000000

spin.x 1 spin.y spin.z 0.0000000000 0.0000000000 1.0000000000 \_\_\_ -0.7748218525 0.0000000000 0.6321796397 .000





# Sanity Check

# with hkicks in the High Energy Ring

- Check if the floor coordinate is the same as the original (global geometry)
- Check if the orbit, optical functions, and ring parameters... are the same as the original

Replace 4 "B2E" (where the rotator magnets will be installed)





# **Comparison of Floor Coord of Full Lattice**

#### **Original Ring**

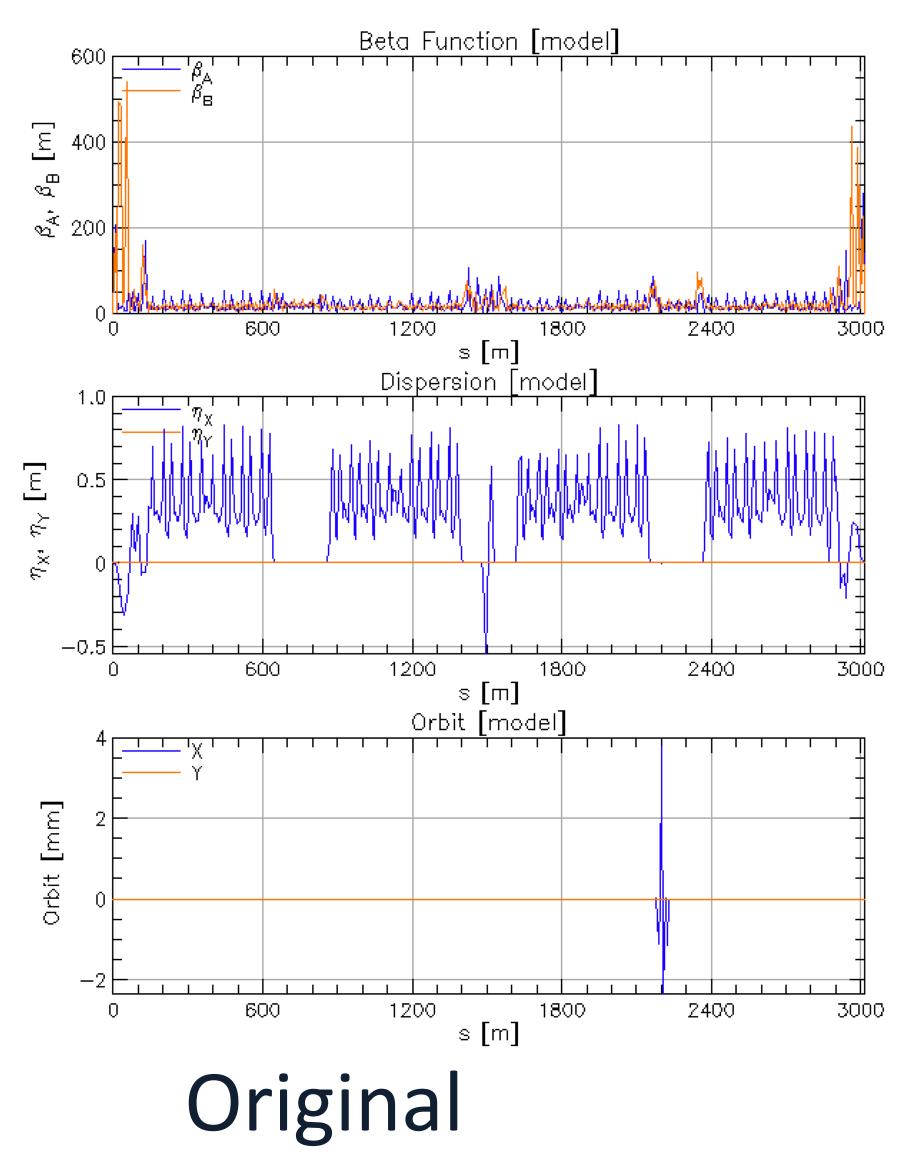
| # | f Index<br>0 |     |        | key<br>Beginning_Ele | 0        | s<br>.000 | 1   | floor.x<br>0.0000000000 | - |
|---|--------------|-----|--------|----------------------|----------|-----------|-----|-------------------------|---|
|   | 6650         | END | Markei | c 3                  | 8016.315 | 0.000     | 0.0 | 000000000               | 0 |

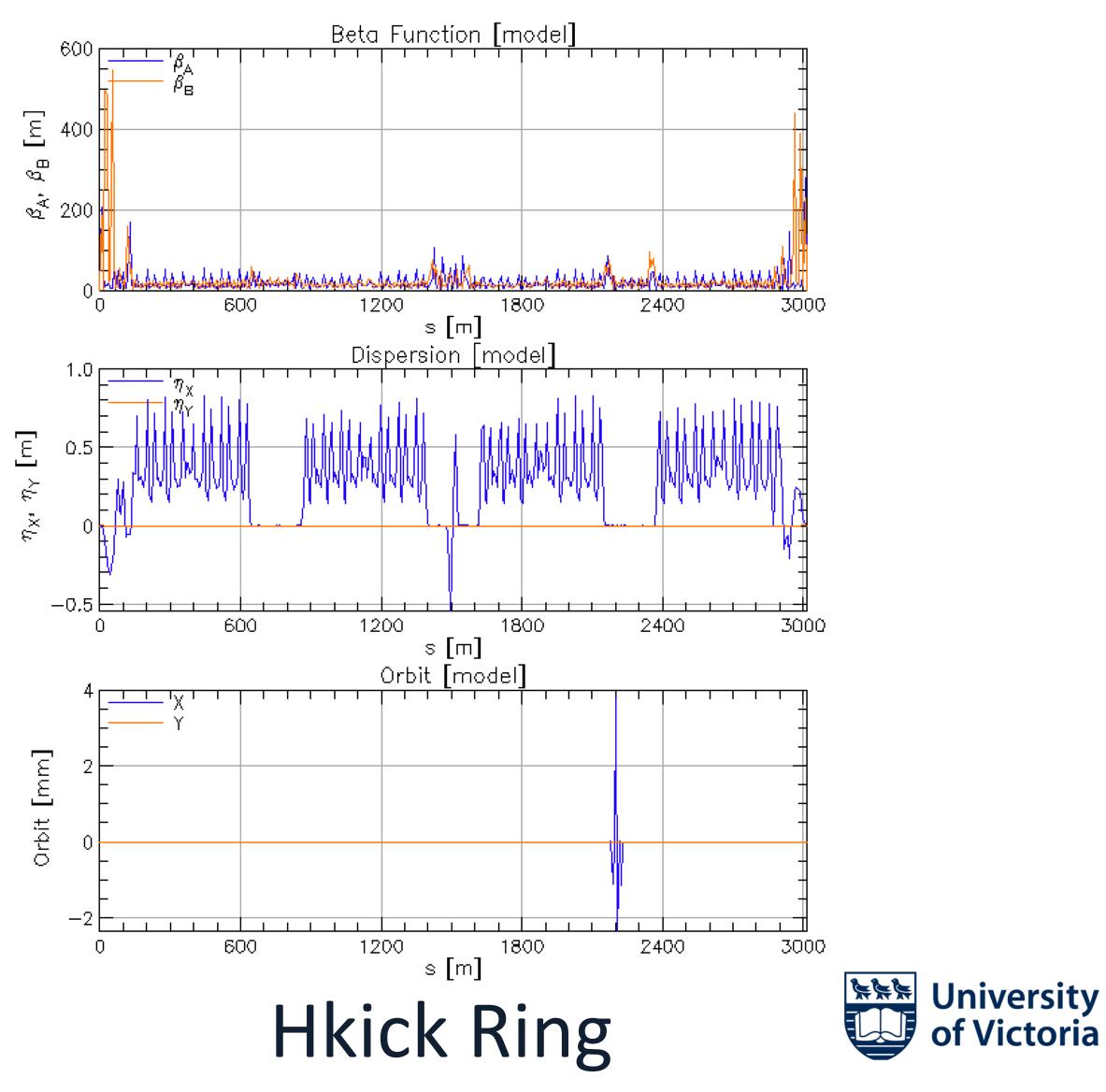
### Hkick Ring (From here if not mentioned, all the hkicks are 96 sliced)

| # | Index | name  |      | key           |          | S   | 1  | f        | loor.x |
|---|-------|-------|------|---------------|----------|-----|----|----------|--------|
|   | 0     | BEGIN | NING | Beginning_Ele | 0.       | 000 |    | 0.0000   | 000000 |
|   |       |       |      |               |          |     |    |          |        |
|   | 7414  | END   | Mark | er            | 3016.315 | 0.0 | 00 | 0.000000 | 000    |

floor.z floor.theta floor.y floor.phi 0.0000000000 0.000000000 0.000000000 0.000000000 0.000000000 -0.000000055 -6.2831853072 0.000000000

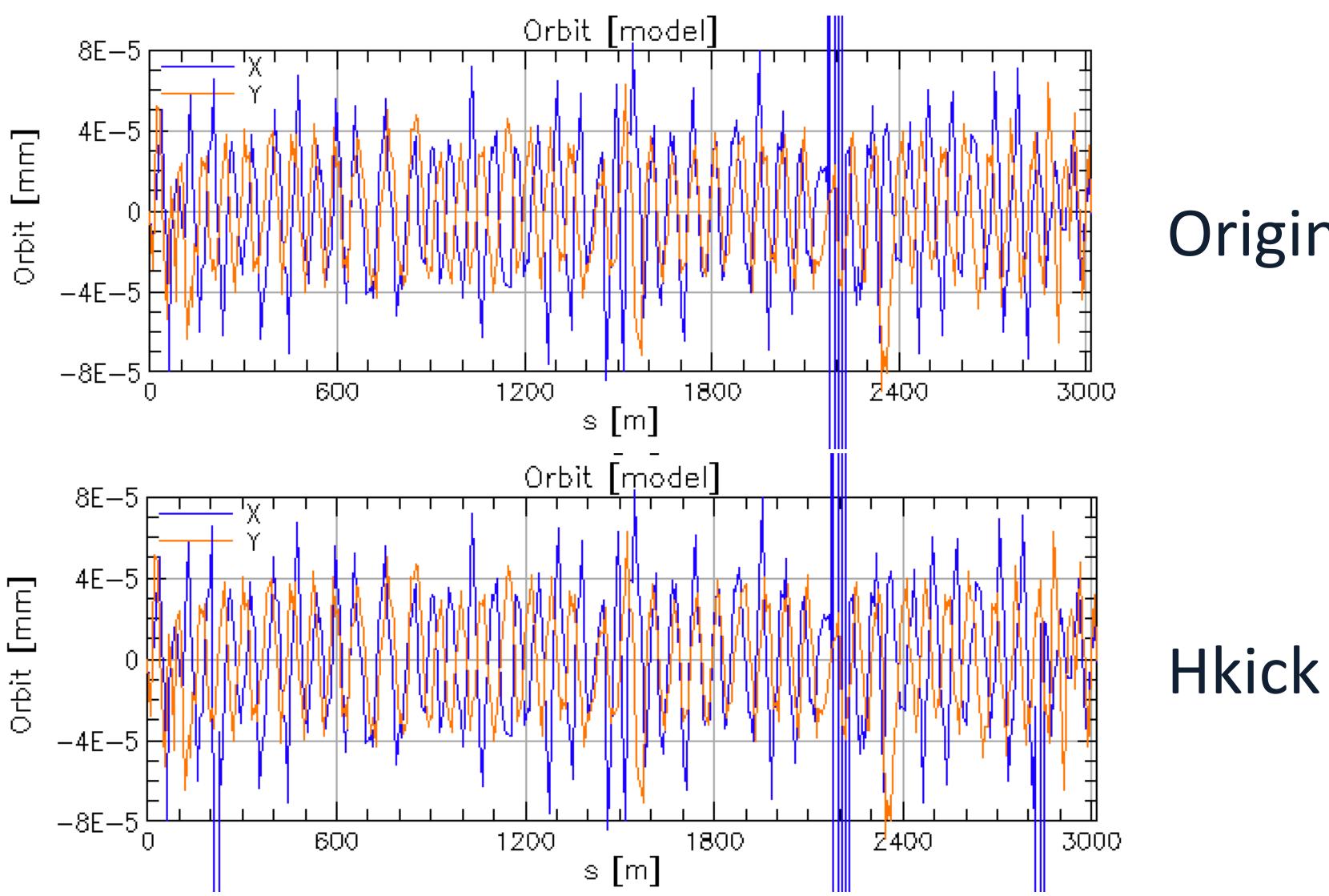
floor.y floor.z floor.theta floor.phi 0.0000000000 0.000000000 0.0000000000 0.000000000 0.0000000000 -0.000000056 -6.2831853072 0.0000000000





#### floor.psi 0.000000000 0.0000000000

#### floor.psi 0.000000000 0.000000000




### **Comparison of the Orbit and Optical Functions of the Ring**



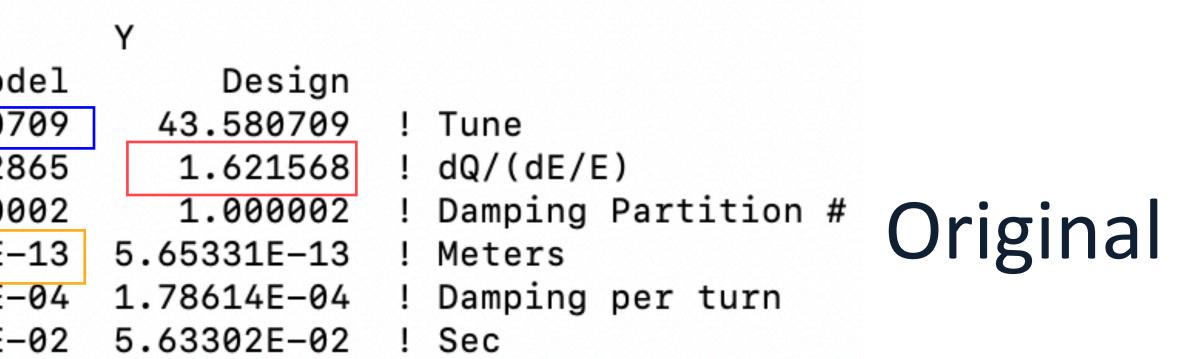




# **Comparison of Orbit of Full Lattice**



### Original






# **Comparison of Ring Parameters**

|              |             | х           | 1         |
|--------------|-------------|-------------|-----------|
|              | Model       | Design      | Moc       |
| Q            | 45.530994   | 45.530994   | 43.5807   |
| Chrom        | 1.593508    | 1.591895    | 1.6228    |
| J_damp       | 1.000064    | 0.999662    | 1.0000    |
| Emittance    | 4.44061E-09 | 4.44277E-09 | 5.65367E- |
| Alpha_damp   | 1.78625E-04 | 1.78553E-04 | 1.78614E- |
| Damping_time | 5.63267E-02 | 5.63493E-02 | 5.63302E- |

|              |             | Х           |             | Y           |                             |
|--------------|-------------|-------------|-------------|-------------|-----------------------------|
|              | Model       | Design      | Model       | Design      |                             |
| Q            | 45.531143   | 45.531143   | 43.578638   | 43.578638   | ! Tune                      |
| Chrom        | 1.580251    | 1.577990    | 1.657455    | 1.655489    | ! dQ/(dE/E)                 |
| J_damp       | 0.999966    | 0.999398    | 1.000002    | 1.000002    | ! Damping Partition # HKICK |
| Emittance    | 4.44076E-09 | 4.44381E-09 | 5.69865E-13 | 5.69810E-13 | ! Meters                    |
| Alpha_damp   | 1.78607E-04 | 1.78505E-04 | 1.78613E-04 | 1.78613E-04 | ! Damping per turn          |
| Damping_time | 5.63324E-02 | 5.63644E-02 | 5.63304E-02 | 5.63304E-02 | ! Sec                       |

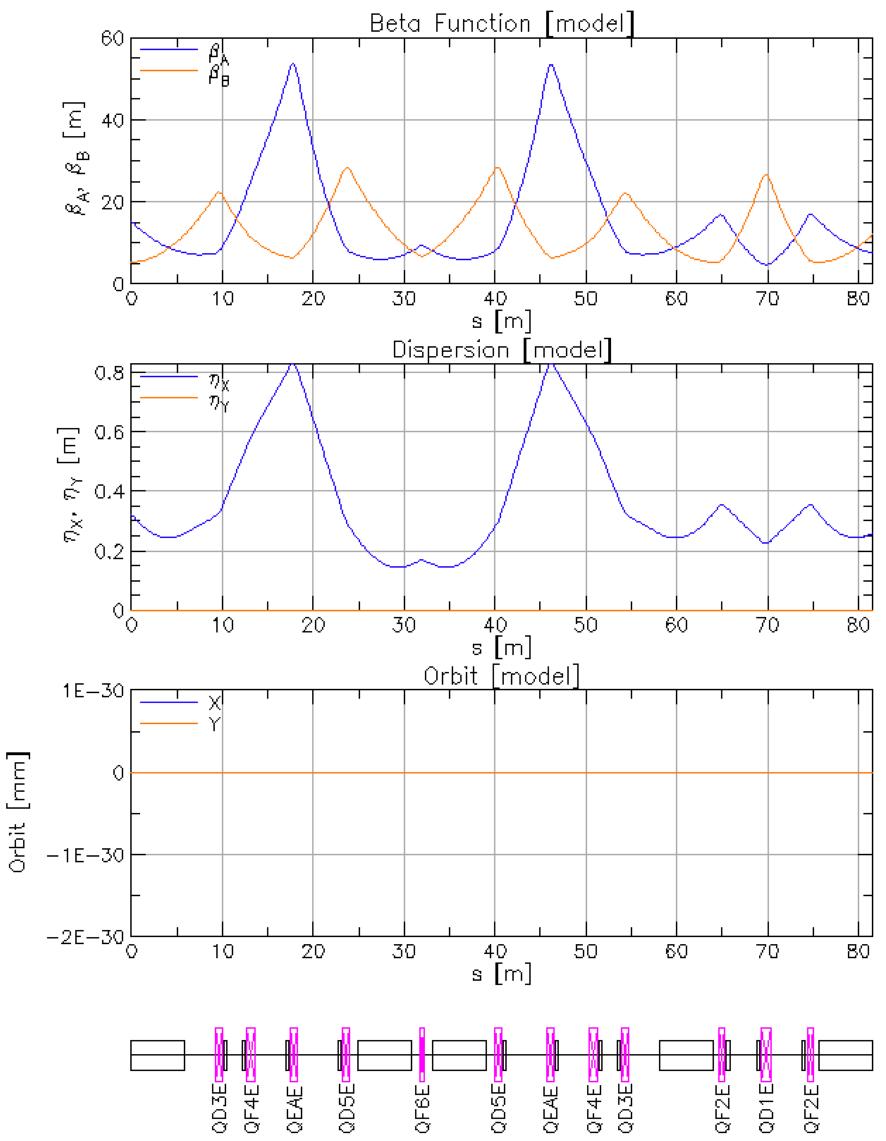






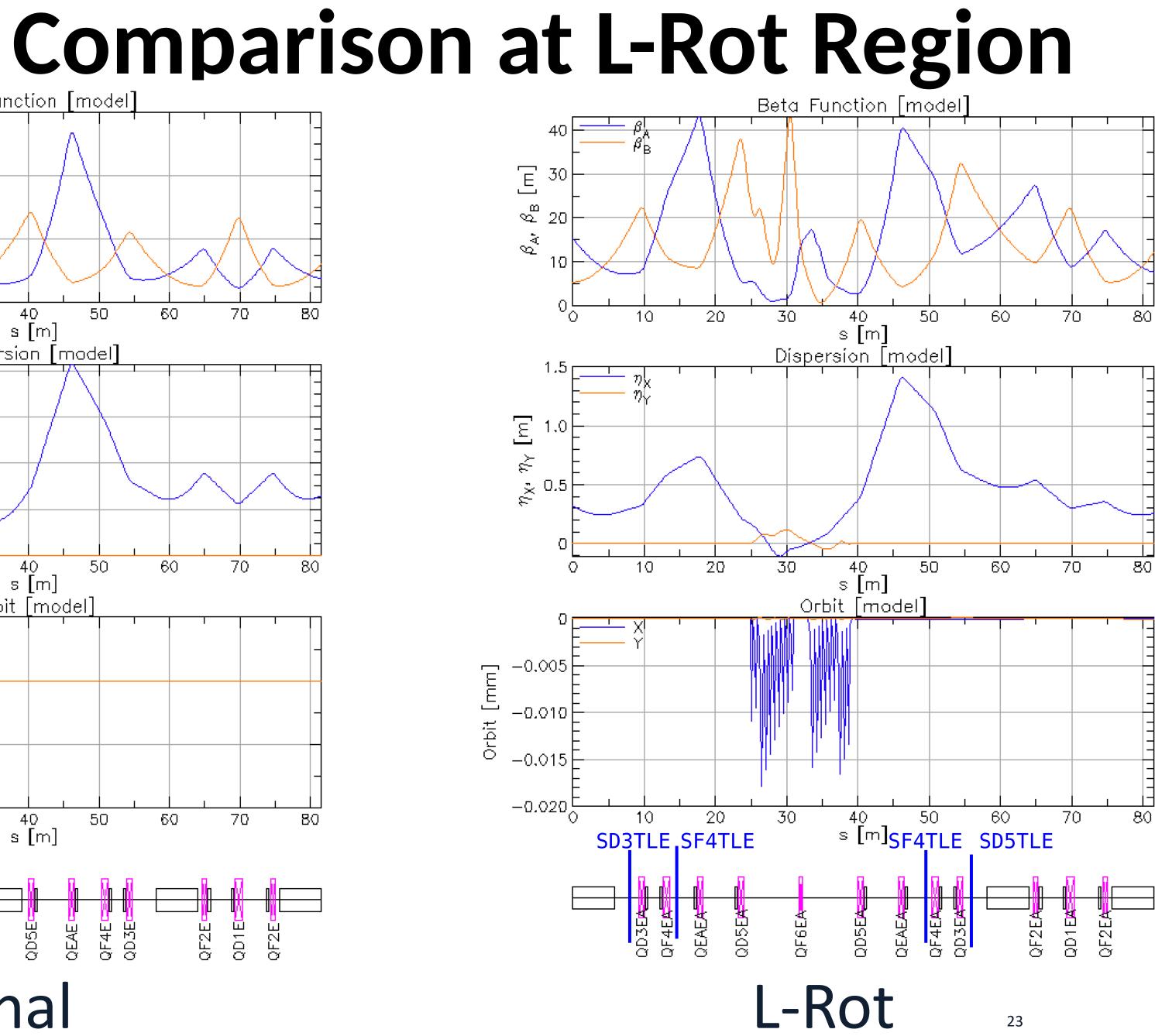
# Fit the Solenoid-Quad

The particle will experience the solenoid-Quad field when it's turned on


The x-y plane is coupled due to the solenoid effect, so the horizontal motion will effect the vertical motion

vkick to fix the vertical orbit when fitting the solenoid-Quad

- Need to Refit the hkick to fix the horizontal orbit and introduce








Original

Orbit [mm]







# L-Rot Solenoid Strength

| Solenoid       | Length (m) | Strength (T) |
|----------------|------------|--------------|
| <b>B2EALSQ</b> | 5.9        | -4.843       |
| <b>B2EBLSQ</b> | 5.9        | -2.577       |



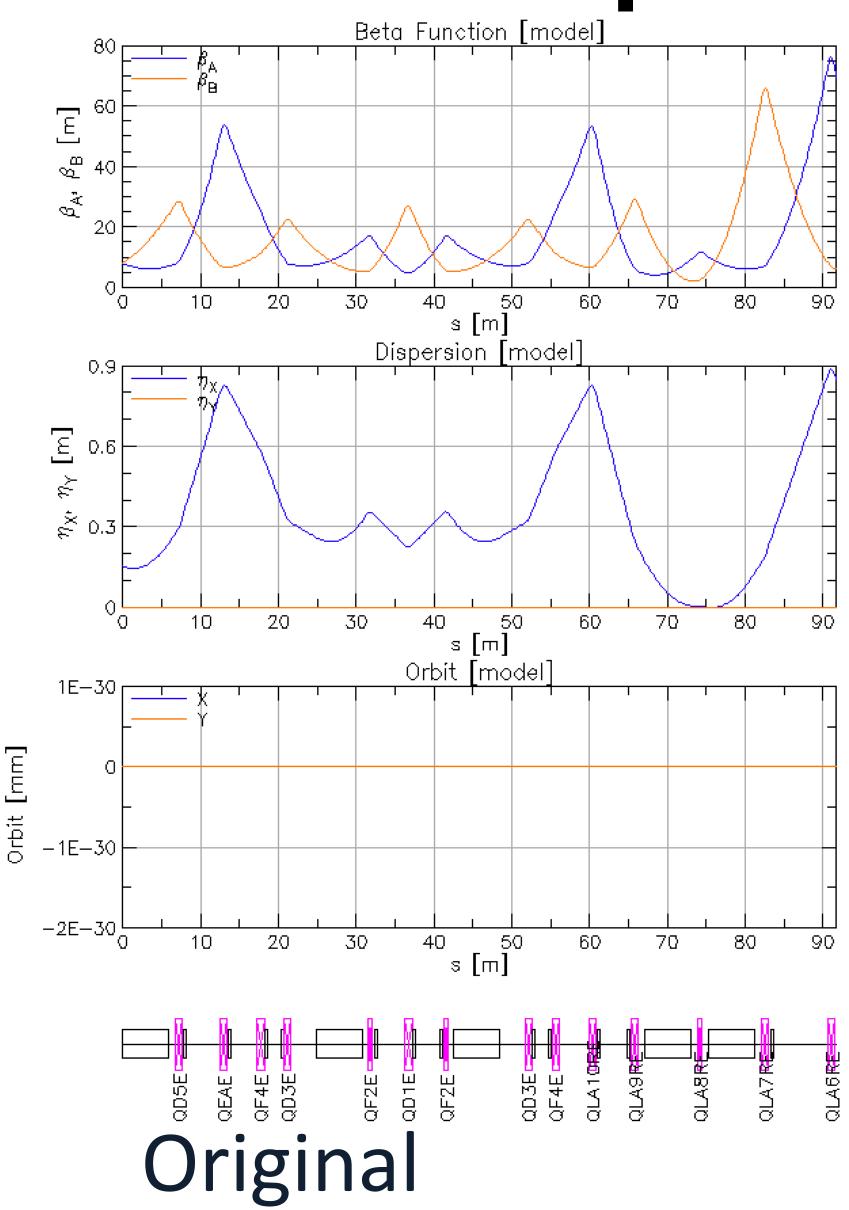


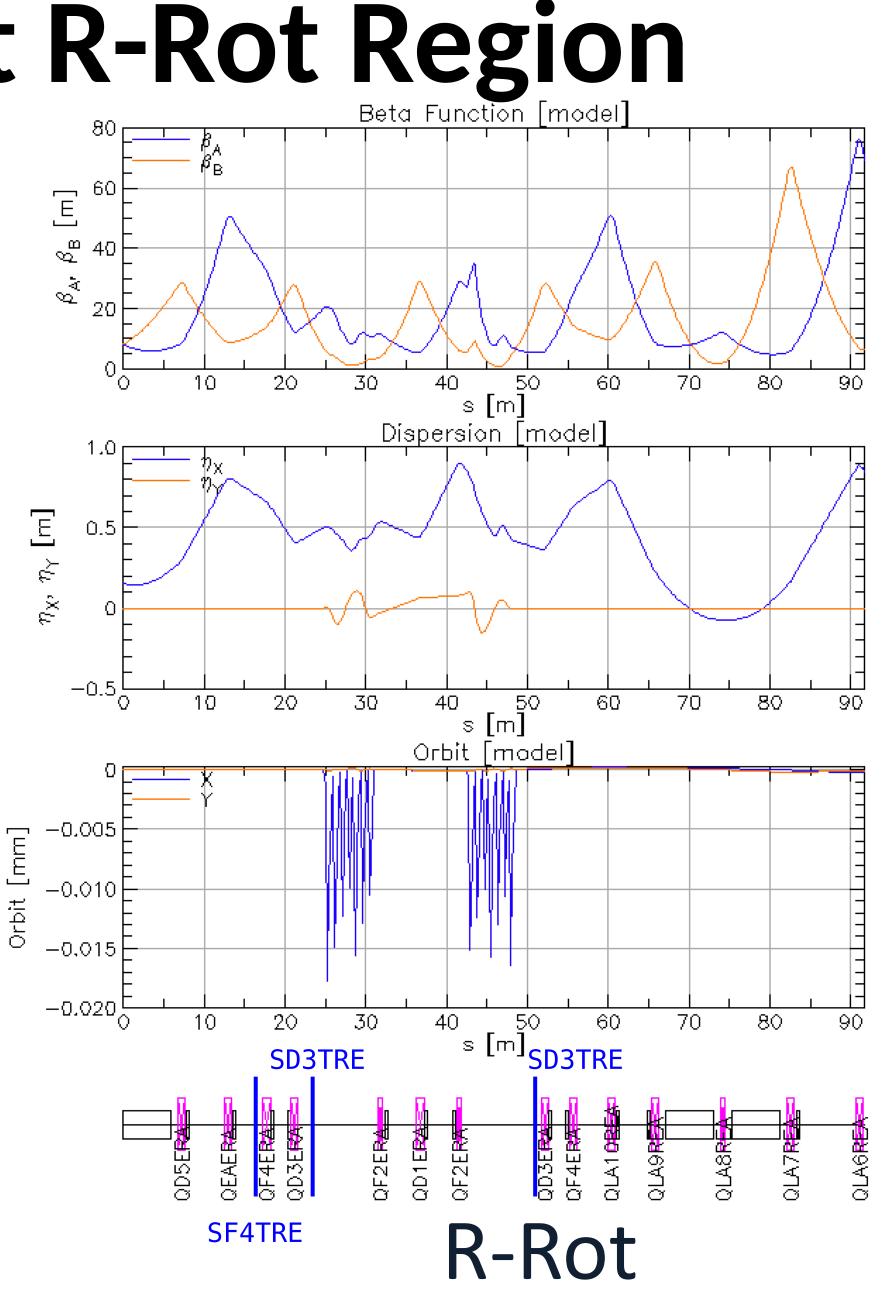
# **Skew-Quads in the L-Rot**

| Skew-Quads | Length (m) | Strength (T/m) | Tilt (rad) |
|------------|------------|----------------|------------|
| B2EALSQ1   | 0.984      | 12.133         | -0.426     |
| B2EALSQ2   | 0.984      | 12.130         | 1.053      |
| B2EALSQ3   | 0.984      | -7.457         | -0.988     |
| B2EALSQ4   | 0.984      | 20.315         | 0.030      |
| B2EALSQ5   | 0.984      | 16.350         | -0.630     |
| B2EALSQ6   | 0.984      | 19.340         | 1.383      |
|            |            |                |            |
| B2EBLSQ1   | 0.984      | 13.266         | 0.651      |
| B2EBLSQ2   | 0.984      | -11.444        | 0.992      |
| B2EBLSQ3   | 0.984      | 10.119         | -1.494     |
| B2EBLSQ4   | 0.984      | 8.024          | -0.931     |
| B2EBLSQ5   | 0.984      | 13.359         | 0.735      |
| B2EBLSQ6   | 0.984      | -4.404         | 0.868      |






# **Quads Comparison in the L-Rot Region**


|             | Length  | Original (k1L) | L-Rot (k1L) | Original<br>(T/m) | L-Rot<br>(T/m) |
|-------------|---------|----------------|-------------|-------------------|----------------|
| <b>QD3E</b> | 0.82615 | -0.175         | -0.177      | -4.948            | -5.012         |
| QF4E        | 1.01523 | 0.035          | 0.071       | 0.805             | 1.633          |
| QEAE        | 0.82615 | 0.183          | 0.175       | 5.178             | 4.961          |
| QD5E        | 0.82615 | -0.179         | -0.286      | -5.074            | -8.079         |
| QF6E        | 0.55697 | 0.163          | 0.343       | 6.855             | 14.366         |
| QF2E        | 0.55697 | 0.192          | 0.144       | 8.050             | 6.067          |
| QD1E        | 1.01523 | -0.255         | -0.203      | -5.867            | -4.682         |





# **Comparison at R-Rot Region**









# **R-Rot Solenoid Strength**

| Solenoid       | Length (m) | Strength (T) |
|----------------|------------|--------------|
| <b>B2EARSQ</b> | 5.9        | -3.608       |
| <b>B2EBRSQ</b> | 5.9        | -3.942       |





# **Skew-Quads in the R-Rot**

| Skew-Quads      | Length (m) | Strength (T/m) | Tilt (rad) |
|-----------------|------------|----------------|------------|
| B2EARSQ1        | 0.984      | 10.341         | -2.610     |
| B2EARSQ2        | 0.984      | 14.258         | 2.290      |
| B2EARSQ3        | 0.984      | 1.032          | 2.327      |
| B2EARSQ4        | 0.984      | -13.451        | -0.180     |
| <b>B2EARSQ5</b> | 0.984      | 14.258         | -2.545     |
| B2EARSQ6        | 0.984      | -14.038        | 0.618      |
|                 |            |                |            |
| B2EBRSQ1        | 0.984      | 11.769         | -2.480     |
| B2EBRSQ2        | 0.984      | 12.648         | 2.238      |
| B2EBRSQ3        | 0.984      | 6.663          | -0.960     |
| B2EBRSQ4        | 0.984      | -13.429        | -0.197     |
| B2EBRSQ5        | 0.984      | 14.258         | -2.846     |
| B2EBRSQ6        | 0.984      | -9.098         | 0.475      |





# **Quads Comparison in the R-Rot Region**

| Quadrupole  | Length (m) | Original k1L | R-Rot k1L | Original (T/m) | R-Rot (T/m) |
|-------------|------------|--------------|-----------|----------------|-------------|
| QD5E        | 0.82615    | -0.179       | -0.165    | -5.074         | -4.667      |
| QEAE        | 0.82615    | 0.183        | 0.154     | 5.178          | 4.362       |
| QF4E        | 1.01523    | 0.035        | 0.067     | 0.805          | 1.538       |
| <b>QD3E</b> | 0.82615    | -0.175       | -0.251    | -4.948         | -7.088      |
| QF2E        | 0.55697    | 0.192        | 0.183     | 8.050          | 7.659       |
| QD1E        | 1.01523    | -0.255       | -0.274    | -5.867         | -6.311      |
| QLA10RE     | 0.82615    | 0.202        | 0.185     | 5.718          | 5.234       |
| QLA9RE      | 0.82615    | -0.237       | -0.226    | -6.703         | -6.385      |
| QLA8RE      | 0.55697    | 0.203        | 0.169     | 8.527          | 7.106       |
| QLA7RE      | 0.82615    | -0.192       | -0.195    | -5.438         | -5.522      |
| QLA6RE      | 0.82615    | 0.202        | 0.205     | 5.716          | 5.808       |





### Linear Relationship Between the Chromaticity and the Sextupole Strength

$$\begin{cases} \xi_x = \sum_i m_i x_i + x_0 \\ \xi_y = \sum_i n_i x_i + y_0 \\ i \end{cases}$$

- Where  $\xi_{\chi}$ ,  $\xi_{\nu}$  is the first order chromaticity
- $x_i$  is the strength of sextupole
- $m_i$ ,  $n_i$  only depends on local optics
- $x_0, y_0$  is the chromaticity when all tuning sextupoles are turned off





# Sextupoles used for fixing the first order chromaticity

SD5TLE, SF4TLE, and SD3TRE pairs are turned off because the phase difference between these pairs is no longer  $\pi$ 

|        | length (m) | B2(Original) | B2(Rot) | K2L(Original) | K2L(Rot) |
|--------|------------|--------------|---------|---------------|----------|
| SD3TLE | 1.03       | -3.577       | -4.027  | -7.153        | -8.054   |
| SF6TLE | 0.334      | 0.818        | 1.008   | 1.635         | 2.015    |
| SD7TLE | 1.03       | -3.607       | -4.062  | -7.214        | -8.123   |
| SD7TRE | 1.03       | -1.730       | -4.042  | -3.459        | -8.084   |
| SF6TRE | 0.334      | 0.829        | 1.596   | 1.659         | 3.192    |
| SD5TRE | 1.03       | -1.695       | -4.088  | -3.390        | -8.177   |







# Check the global geometry with Rot Installed in the Ring

### Original

| # | Index<br>0 |          | key<br>Beginning_Ele | e (      | s<br>0.000 | 1   | floor.x<br>0.0000000000 |              |              |               | floor.phi<br>0.0000000000 | flo<br>0.0000 |
|---|------------|----------|----------------------|----------|------------|-----|-------------------------|--------------|--------------|---------------|---------------------------|---------------|
|   | 6650       | END Mark | er                   | 3016.315 | 0.000      | 0.0 | 000000000               | 0.0000000000 | -0.000000055 | -6.2831853072 | 0.0000000000              | 0.0000        |

#### Rot

| # Ir | ndex | name      | key           |    | s   | 1 | floor.x      |
|------|------|-----------|---------------|----|-----|---|--------------|
|      | 0    | BEGINNING | Beginning_Ele | 0. | 000 |   | 0.0000000000 |
|      |      |           |               |    |     |   |              |

| 7414 END Marker 3016.315 0.000 0.0000000000 |  | 7414 | END | Marker | 3016.315 | 0.000 | 0.000000000 |
|---------------------------------------------|--|------|-----|--------|----------|-------|-------------|
|---------------------------------------------|--|------|-----|--------|----------|-------|-------------|

floor.theta floor.phi floor.y floor.z 0.0000000000 0.0000000000 0.000000000 0.0000000000 0.000000000 -0.000000056 -6.2831853072 0.0000000000



#### loor.psi 00000000 000000000

#### floor.psi 0.000000000

#### 0.000000000



# Longitudinal spin alignment at the IP

with the rotator installed in the High Energy Ring

| Spin Component Entrance of Rot |                     | IP                  | Exit               |
|--------------------------------|---------------------|---------------------|--------------------|
| Χ                              | -0.0000032792024300 | -0.0000044677361868 | -0.000063748934711 |
| Υ                              | 0.999999999802550   | 0.000026796195603   | 0.999999999793680  |
| Ζ                              | -0.0000053600276775 | 0.999999999864290   | 0.000007825194459  |

# • The spin track result shows a longitudinal spin alignment >99.99%









# **IP Status**

## Original

Twiss at end of element:

|             | А           | В             |   | Cbar       |   |
|-------------|-------------|---------------|---|------------|---|
| Beta (m)    | 0.05998852  | 0.00099672    | 1 | 0.00001394 |   |
| Alpha       | 0.00000597  | 0.00006932    | 1 | -0.0000058 |   |
| Gamma (1/m) | 16.66985613 | 1003.28929671 | Ì | Gamma_c =  | 1 |
| Phi (rad)   | 0.0000000   | 0.0000000     |   | Х          |   |
| Eta (m)     | 0.0000001   | 0.0000000     |   | 0.0000001  |   |
| Etap        | -0.0000037  | -0.0000060    |   | -0.0000037 |   |
| Sigma       | 0.00001638  | 0.0000021     |   | 0.00001638 |   |
|             |             |               |   |            |   |

| Orbit: | Positron State  | e: Alive      |            |                                  |               |        |             |
|--------|-----------------|---------------|------------|----------------------------------|---------------|--------|-------------|
|        | Position[mm] Mo | omentum[mrad] | Spin       |                                  |               |        |             |
| x:     | -0.00000137     | -0.00000539   | 0.00333570 | t_particle [sec]:                | 0.0000000E+00 | E_tot: | 7.00729E+09 |
| Υ:     | -0.0000051      | -0.00007224   | 0.99996491 | <pre>  t_part-t_ref [sec]:</pre> | 0.0000000E+00 | PC:    | 7.00729E+09 |
| Ζ:     | 0.0000000       | 0.0000000     | 0.00768449 | (t_ref-t_part)*Vel [m]:          | 0.0000000E+00 | Beta:  | 0.999999997 |

### Rot

Twiss at end of element:

|          | stement.                                                             |                                                                                                                                                     |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | А                                                                    | В                                                                                                                                                   | Cbar                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C_mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (m)      | 0.06000001                                                           | 0.00100333                                                                                                                                          | 0.0000049                                                                                                                                                                                                                                     | 0.00005373                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00000042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 0.00003353                                                           | 0.00354778                                                                                                                                          | -0.00000020                                                                                                                                                                                                                                   | -0.0000019                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.00002612 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1/m)    | 16.66666296                                                          | 996.69118486                                                                                                                                        | Gamma_c =                                                                                                                                                                                                                                     | 1.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Mode_Flip = F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| rad)     | 0.0000000                                                            | 0.0000000                                                                                                                                           | X                                                                                                                                                                                                                                             | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| m )      | -0.0000009                                                           | 0.0000010                                                                                                                                           | -0.0000009                                                                                                                                                                                                                                    | 0.0000010                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | -0.00000750                                                          | -0.00000504                                                                                                                                         | -0.00000750                                                                                                                                                                                                                                   | -0.00000504                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | 0.00001638                                                           | 0.0000021                                                                                                                                           | 0.00001638                                                                                                                                                                                                                                    | 0.0000021                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Positron | State: Alive                                                         | )                                                                                                                                                   |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Positior | n[mm] Momentum[                                                      | mrad] S                                                                                                                                             | pin                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -0.0000  | 00130 -0.000                                                         | 05444 -0.0000                                                                                                                                       | 0447   t_partic                                                                                                                                                                                                                               | le [sec]:                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E_tot: 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -0.0000  | 0.000                                                                | 04703 0.0000                                                                                                                                        | 0268   t_part-t                                                                                                                                                                                                                               | _ref [sec]:                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PC: 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0000   | 0.000 0.000                                                          | 00000 1.0000                                                                                                                                        | 0000   (t_ref-t                                                                                                                                                                                                                               | _part)*Vel [m]:                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beta: 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | (m)<br>(1/m)<br>rad)<br>m)<br>Positron<br>Positior<br><u>-0.0000</u> | A<br>(m) 0.06000001<br>0.00003353<br>(1/m) 16.66666296<br>rad) 0.00000000<br>m) -0.00000009<br>-0.0000009<br>-0.00000051 0.000<br>-0.00000051 0.000 | A   B     (m)   0.06000001   0.00100333     0.00003353   0.00354778     (1/m)   16.66666296   996.69118486     rad)   0.00000000   0.0000000     m)   -0.00000009   0.00000000     m)   -0.00000750   -0.00000504     0.00001638   0.00000021 | A   B   Cbar     (m)   0.06000001   0.00100333   0.00000049     0.00003353   0.00354778   -0.00000020     (1/m)   16.66666296   996.69118486   Gamma_c =     rad)   0.0000000   0.00000000   X     m)   -0.0000009   0.0000000   -0.0000009     0.00001638   0.0000021   0.00001638     Positron   State: Alive     Position[mm]   Momentum[mrad]   Spin     -0.00000130   -0.00005444   -0.00004477   t_partic     -0.0000051   0.00004703   0.00000268   t_part-t | A B Cbar   (m) 0.06000001 0.00100333 0.00000049 0.00005373   0.00003353 0.00354778 -0.00000020 -0.00000019   (1/m) 16.66666296 996.69118486 Gamma_c = 1.00000000   rad) 0.00000000 0.00000000 X Y   m) -0.0000009 0.00000000 -0.0000009 0.00000010   -0.00000750 -0.00000504 -0.00000750 -0.00000504   0.00001638 0.0000021 0.00001638 0.0000021   Positron State: Alive Spin     -0.00000130 -0.00005444 -0.00000447 t_particle [sec]:   -0.0000051 0.00004703 0.0000268 t_part-t_ref [sec]: | A   B   Cbar   C_mat     (m)   0.0600001   0.00100333   0.0000049   0.00005373   0.00005373     0.00003353   0.00354778   -0.00000020   -0.00000019   -0.00002612   -0.00002612     (1/m)   16.66666296   996.69118486   Gamma_c =   1.00000000   Mode_Flip = F     rad)   0.0000000   0.00000000   X   Y   Z     m)   -0.00000750   -0.00000504   -0.00000750   -0.00000000   1.00000000     -0.00001638   0.00000021   0.00001638   0.00000021   0.00000021   0.00000021     Position[mm] Momentum[mrad]   Spin       -0.00000544   -0.00000477   t_particle [sec]:   0.0000000E+00     -0.00000130   -0.000005444   -0.000004477   t_part-t_ref [sec]:   0.0000000E+00 |

C\_mat 0.00010814 0.00005392 0.00000042 0.00000283 -0.00007474 0.0000036 1.00000000  $Mode_Flip = F$ Υ Ζ 0.00000000 0.00000000 -0.0000060 1.00000000 0.00000021

00729E+09 00729E+09 0.999999997 0.00000000 1.00000000 | (t\_ref-t\_part)\*Vel [m]: 0.00000000E+00 Beta:





# **Comparison of Ring Parameters With First Order Chormaticity Fixed**

### Original

|              |             | Х           |             | Y           |   |        |  |  |
|--------------|-------------|-------------|-------------|-------------|---|--------|--|--|
|              | Model       | Design      | Model       | Design      |   |        |  |  |
| Q            | 45.530994   | 45.530994   | 43.580709   | 43.580709   | ! | Tune   |  |  |
| Chrom        | 1.593508    | 1.591895    | 1.622865    | 1.621568    | ! | dQ/(dE |  |  |
| J_damp       | 1.000064    | 0.999662    | 1.000002    | 1.000002    | ! | Dampin |  |  |
| Emittance    | 4.44061E-09 | 4.44277E-09 | 5.65367E-13 | 5.65331E-13 | ! | Meters |  |  |
| Alpha_damp   | 1.78625E-04 | 1.78553E-04 | 1.78614E-04 | 1.78614E-04 | ! | Dampin |  |  |
| Damping_time | 5.63267E-02 | 5.63493E-02 | 5.63302E-02 | 5.63302E-02 | ! | Sec    |  |  |

#### Rot

|              | х           |             | 1 | Y          |             |   |                     |
|--------------|-------------|-------------|---|------------|-------------|---|---------------------|
|              | Model       | Design      | Ì | Model      | Design      |   |                     |
| Q            | 45.777566   | 45.777566   |   | 44.446774  | 44.446774   | ! | Tune                |
| Chrom        | 1.593508    | 1.541611    |   | 1.622865   | 1.700876    | ! | dQ/(dE/E)           |
| J_damp       | 0.984214    | 0.983584    |   | 1.005265   | 1.005263    | ! | Damping Partition # |
| Emittance    | 4.88965E-09 | 4.89356E-09 | 4 | .01654E-12 | 4.01059E-12 | ! | Meters              |
| Alpha_damp   | 1.75793E-04 | 1.75681E-04 | 1 | .79553E-04 | 1.79553E-04 | ! | Damping per turn    |
| Damping_time | 5.72340E-02 | 5.72706E-02 | 5 | .60354E-02 | 5.60355E-02 | ! | Sec                 |

- IE/E)
- .ng Partition #
- S
- ng per turn

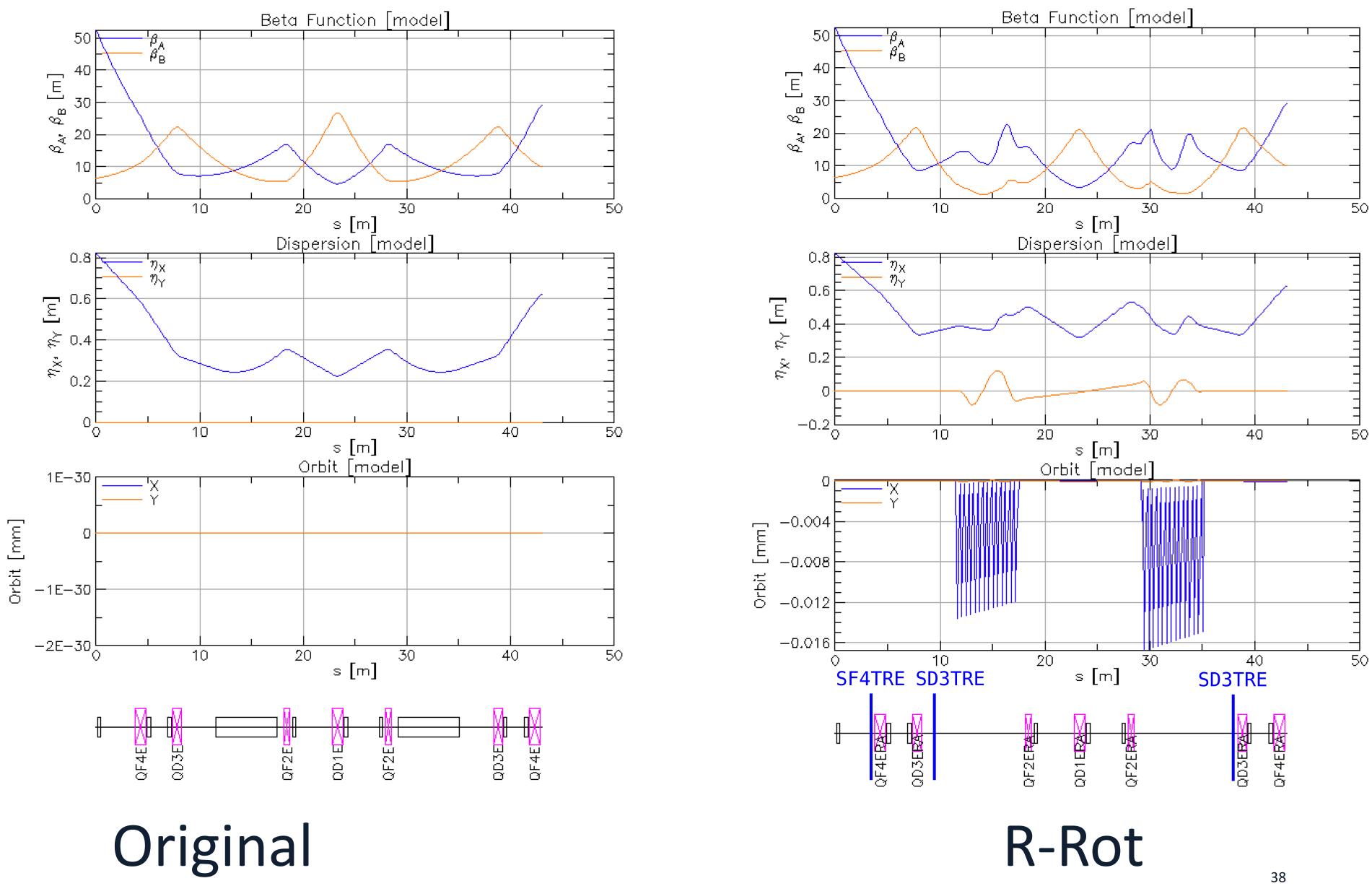




#### An Alternative Solution has been found, need to confirm which one is to be used

Long Term Tracking (2M turns required)

Fix the Tune value










# **Alternative R-Rot**







# **Alternative Ring Quads**

| Quadrupole  | Length (m) | Original k1L | R-Rot k1L | Original (T/m) | R-Rot (T/m) |
|-------------|------------|--------------|-----------|----------------|-------------|
| QF4E        | 1.01523    | 0.035        | 0.031     | 0.805          | 0.716       |
| <b>QD3E</b> | 0.82615    | -0.175       | -0.256    | -4.948         | -7.230      |
| QF2E        | 0.55697    | 0.192        | 0.161     | 8.050          | 6.766       |
| QD1E        | 1.01523    | -0.255       | -0.273    | -5.867         | -6.285      |





# **Alternative Sextupoles**

|        | length (m) | B2(Original) | B2(Rot) | K2L(Original) | K2L(Rot) |
|--------|------------|--------------|---------|---------------|----------|
| SD3TLE | 1.03       | -3.577       | -4.065  | -7.153        | -8.131   |
| SF6TLE | 0.334      | 0.818        | 1.080   | 1.635         | 2.160    |
| SD7TLE | 1.03       | -3.607       | -3.854  | -7.214        | -7.707   |
| SD7TRE | 1.03       | -1.730       | -4.150  | -3.459        | -8.300   |
| SD5TRE | 1.03       | -1.695       | -4.005  | -3.390        | -8.010   |
| SF4TRE | 0.334      | 0.505        | 1.274   | 1.010         | 2.547    |





# **IP Status**

## Original

Twiss at end of element:

|             | А           | В             | Cbar        |            | C_mat       |           |
|-------------|-------------|---------------|-------------|------------|-------------|-----------|
| Beta (m)    | 0.05998852  | 0.00099672    | 0.00001394  | 0.00005392 | 0.00010814  | 0.0000042 |
| Alpha       | 0.00000597  | 0.00006932    | -0.00000058 | 0.0000283  | -0.00007474 | 0.0000036 |
| Gamma (1/m) | 16.66985613 | 1003.28929671 | Gamma_c =   | 1.00000000 | Mode_Flip = | F         |
| Phi (rad)   | 0.0000000   | 0.0000000     | Х           | Y          | Z           |           |
| Eta (m)     | 0.0000001   | 0.0000000     | 0.0000001   | 0.0000000  | 0.0000000   |           |
| Etap        | -0.0000037  | -0.0000060    | -0.0000037  | -0.0000060 | 1.00000000  |           |
| Sigma       | 0.00001638  | 0.00000021    | 0.00001638  | 0.0000021  |             |           |

| Orbit: | Positron Stat  | te: Alive      |            |   |                         |               |        |             |
|--------|----------------|----------------|------------|---|-------------------------|---------------|--------|-------------|
|        | Position[mm] M | lomentum[mrad] | Spin       | 1 |                         |               |        |             |
| x:     | -0.00000137    | -0.00000539    | 0.00333570 |   | t_particle [sec]:       | 0.0000000E+00 | E_tot: | 7.00729E+09 |
| Υ:     | -0.0000051     | -0.00007224    | 0.99996491 |   | t_part-t_ref [sec]:     | 0.0000000E+00 | PC:    | 7.00729E+09 |
| Ζ:     | 0.0000000      | 0.0000000      | 0.00768449 | 1 | (t_ref-t_part)*Vel [m]: | 0.0000000E+00 | Beta:  | 0.999999997 |

#### Alternative Rot

| Twiss at end of                    | element:                            |                                                     |                                  |                                             |                                                    |                                                      |
|------------------------------------|-------------------------------------|-----------------------------------------------------|----------------------------------|---------------------------------------------|----------------------------------------------------|------------------------------------------------------|
|                                    | А                                   | В                                                   | Cbar                             |                                             | C_mat                                              |                                                      |
| Beta (m)                           | 0.06000125                          | 0.00099437                                          | -0.0000039                       | 0.00005383                                  | -0.00000349 0                                      | 0.00000042                                           |
| Alpha                              | 0.00003854                          | -0.00118179                                         | 0.0000001                        | -0.0000285                                  | 0.00000127 -0                                      | 0.0000037                                            |
| Gamma (1/m)                        | 16.66632041                         | 1005.66350157                                       | Gamma_c =                        | 1.00000000                                  | $Mode_Flip = F$                                    |                                                      |
| Phi (rad)                          | 0.0000000                           | 0.0000000                                           | Х                                | Y                                           | Z                                                  |                                                      |
| Eta (m)                            | -0.00000079                         | 0.0000009                                           | -0.00000079                      | 0.0000009                                   | 0.0000000                                          |                                                      |
| Etap                               | -0.00000433                         | -0.00003241                                         | -0.00000433                      | -0.00003241                                 | 1.00000000                                         |                                                      |
| Sigma                              | 0.00001638                          | 0.0000021                                           | 0.00001638                       | 0.0000021                                   |                                                    |                                                      |
| Orbit: Positro<br>Positi           | n State: Aliv<br>on[mm] Momentum    |                                                     | in                               |                                             |                                                    |                                                      |
| X: <u>-0.00</u><br>Y: <u>-0.00</u> | <u>000126</u> -0.00<br>000051 -0.00 | 009028 -0.00000<br>003931 0.00000<br>000000 1.00000 | 539   t_partic<br>109   t_part-t | le [sec]:<br>_ref [sec]:<br>_part)*Vel [m]: | 0.00000000E+00<br>0.00000000E+00<br>0.00000000E+00 | E_tot: 7.00729E+<br>PC: 7.00729E+<br>Beta: 0.9999999 |
| 2. 0.00                            | 0.00                                | 1.00000                                             |                                  | -barchater full:                            | 0.0000000000000000000000000000000000000            | Bocu. 0.,,,,,,,,,                                    |

E+09 E+09 9997









### Rot

|              |             | Х           |             | Y           |   |                     |
|--------------|-------------|-------------|-------------|-------------|---|---------------------|
|              | Model       | Design      | Model       | Design      |   |                     |
| Q            | 45.777566   | 45.777566   | 44.446774   | 44.446774   | ! | Tune                |
| Chrom        | 1.593508    | 1.541611    | 1.622865    | 1.700876    | ! | dQ/(dE/E)           |
| J_damp       | 0.984214    | 0.983584    | 1.005265    | 1.005263    | ! | Damping Partition # |
| Emittance    | 4.88965E-09 | 4.89356E-09 | 4.01654E-12 | 4.01059E-12 | ! | Meters              |
| Alpha_damp   | 1.75793E-04 | 1.75681E-04 | 1.79553E-04 | 1.79553E-04 | ! | Damping per turn    |
| Damping_time | 5.72340E-02 | 5.72706E-02 | 5.60354E-02 | 5.60355E-02 | ! | Sec                 |

### **Alternative Rot**

|              |             | Х           |     |          | Y           |   |                     |
|--------------|-------------|-------------|-----|----------|-------------|---|---------------------|
|              | Model       | Design      |     | Model    | Design      |   |                     |
| Q            | 45.851677   | 45.851677   | 4   | 4.544579 | 44.544579   | ! | Tune                |
| Chrom        | 1.593508    | 1.584082    | :   | 1.622865 | 1.536385    | ! | dQ/(dE/E)           |
| J_damp       | 0.973110    | 0.972546    | :   | 1.005193 | 1.005192    | ! | Damping Partition # |
| Emittance    | 4.84923E-09 | 4.85242E-09 | 3.9 | 3024E-12 | 3.94263E-12 | ! | Meters              |
| Alpha_damp   | 1.73810E-04 | 1.73709E-04 | 1.7 | 9540E-04 | 1.79540E-04 | ! | Damping per turn    |
| Damping_time | 5.78871E-02 | 5.79206E-02 | 5.6 | 0395E-02 | 5.60395E-02 | ! | Sec                 |



