Spin Rotator Design for the SuperKEKB High Energy Ring in a Proposed Polarization Upgrade

Yuhao Peng 2021.09.27

Spin Rotator

Right rotator(L-Rot) is to rotate the vertical spin to the longitudinal direction

Left rotator(R-Rot) is to rotate the longitudinal back to vertical

Our simulation is running by the positron, which runs reversely in the HER and the ring is viewed from downward to upward

Our simulation is running by the positron, which runs reversely in the HER and University of Victoria

(Viewed from upward to downward)

Overall spin rotation between the **L-Rot** and the IP:

~212.15° clockwise in the x-z plane

Overall spin rotation between the **IP** and the **R-Rot**: ~203.32° clockwise in the x-z plane

Constraints of the Design

*Transparency: Need to maintain the original beam dynamics, make the spin rotator transparent to the ring as much as possible

- Physical constraints: All new magnets must be manufacturable and installable
 - Solenoid strength can not exceed 5 T
 - Skew-quad can not exceed 35 T/m

Comparison of Full Lattice

Original

Comparison at L-Rot Region

Spin motion of e^- in the L-Rot Region

L-Rot Solenoid Strength

Solenoid	Length (m)	Strength (T)
B2EALSQ	5.9	-4.843
B2EBLSQ	5.9	-2.577

Spin Motion of e in the L-Rot Region

Comparison at R-Rot Region

Spin motion of e^- in the R-Rot Region

R-Rot Solenoid Strength

Solenoid	Length (m)	Strength (T)
B2EARSQ	5.9	-3.608
B2EBRSQ	5.9	-3.942

Spin Motion of e in the R-Rot Region

Longitudinal spin alignment at the IP

The spin track result shows a longitudinal spin alignment >99.99%
 with the rotator installed in the High Energy Ring

Spin Component	Entrance of Rot	IP	Exit
X	-0.0000032792024300	-0.0000044677361868	-0.0000063748934711
Y	0.99999999802550	0.0000026796195603	0.999999999793680
Z	-0.0000053600276775	0.99999999864290	0.0000007825194459

Λ.	•	
ΔT	region	4
	ICGIUII	

index	name	key	s (m)	I (m)	spin.x	spin.y	spin.z
1593	LTL088	Drift	118.08	1.28	0.179917	-0.000922238	0.983681

inaex	name	кеу	s (m)	i (m)	spin.x	spin.y	spin.z
1593	LTL088	Drift	118.08	1.28	0.179917	-0.000922238	0.983681
1595	LTL089	Drift	119.09	0.18	0.179917	-0.000922041	0.983681
1597	LTL090	Drift	119.18	0.08	0.179917	-0.000922041	0.983681
1599	LTL091	Drift	128.61	9.09	0.179917	-0.000922041	0.983681
1601	LTL092	Drift	129.63	0.18	0.179917	-0.000922171	0.983681
1603	LTL093	Drift	129.71	0.08	0.179917	-0.000922171	0.983681
1605	LTL094	Drift	133.31	3.25	0.179917	-0.000922171	0.983681
1607	LTL095	Drift	133.74	0.08	0.179917	-0.000922171	0.983681
1609	LTL096	Drift	133.93	0.18	0.179917	-0.000922171	0.983681
1611	LTL097	Drift	134.94	0.18	0.179917	-0.000922024	0.983681
1612	LTL098	Drift	135.63	0.68	0.179917	-0.000922024	0.983681

index	name	key	s (m)	l (m)	spin.x	spin.y	spin.z									
1409	LTL001	Drift	4.1	0.1	0.014015	-0.000921983	0.999901	1447	LTL020	Drift	21.847	0.9	0.107795	-0.00184052	0.994171	
								1449	LTL021	Drift	22.012	0.165	0.107795	-0.00184052	0.994171	
1411	LTL002	Drift	5.248	0.804	0.014015	-0.000921984	0.999901	1451	LTL022	Drift	22.818	0.237	0.107795	-0.00184057	0.994171	
1413	LTL003	Drift	5.675	0.083	0.014015	-0.000921984	0.999901	1453	LTL023	Drift	25.939	2.76	0.107795	-0.00820915	0.994139	
1415	LTL004	Drift	5.856	0.181	0.014015	-0.000921984	0.999901		LTL024	Drift	26.537		0.107795		0.994173	
1417	LTL005	Drift	6.655	0.261	0.0140151	-0.000921989	0.999901	1455				0.237		-0.000922012		
1419	LTL006	Drift	7.504	0.504	0.0140151	-0.000921988	0.999901	1457	LTL025	Drift	27.272	0.165	0.107795	-0.00092204	0.994173	
1421	LTL007	Drift	11.617	0.51	0.107795	-0.000921988	0.994173	1459	LTL026#1	Drift	27.387	0.115	0.107795	-0.00092204	0.994173	
1423	LTL008	Drift	12.2	0.239	0.107795	-0.000921988	0.994173	1461	LTL026#2	Drift	27.502	0.115	0.107795	-0.00092204	0.994173	ľ
						-0.000921979		1463	LTL027	Drift	28.651	0.549	0.107795	-0.00092204	0.994173	
1425								1465	LTI 028	Drift	29.282	0 169	0 107795	-0.000922095	0.994173	
1427	LTL010	Drift	14.324	1.388	0.107795	-0.000921979	0.994173									
1429	LTL011	Drift	15.047	0.362	0.107795	0.0072246	0.994147	1467	LTL029	Drift	29.365	0.083	0.107795	-0.000922095	0.994173	
1431	LTL012	Drift	15.547	0.25	0.107795	0.0072246	0.994147	1469	LTL030	Drift	30.901	1.192	0.107795	-0.000922095	0.994173	
1433	LTL013	Drift	16.826	1.029	0.107795	0.0072246	0.994147	1471	LTL031	Drift	34.011	3.109	0.107795	-0.000922095	0.994173	
1435	LTL014	Drift	17.693	0.867	0.107795	0.0072246	0.994147	1473	LTL032	Drift	34.438	0.083	0.107795	-0.000922095	0.994173	
1437	LTL015	Drift	18.291	0.237	0.107795	-0.00184054	0.994171	1475	LTL033	Drift	34.603	0.165	0.107795	-0.000922095	0.994173	
1439	LTL016	Drift	19.026	0.165	0.107795	-0.00184052	0.994171	1477	LTI 034	Drift	35.338	0.165	0.107795	-0.000922066	0.994173	
1441	LTL017					-0.00184052	0.994171									
								1478	LTL035	Drift	36.087	0.749	0.107795	-0.000922066	0.994173	
1443	LTL018	Drift	20.197	0.744	0.107795	-0.00184052	0.994171								University of Victoria	
1445	LTL019	Drift	20.697	0.25	0.107795	-0.00184052	0.994171								oi victoria	

Notice: the table shows the spin tracking result for the positron

Appendix

The normalized integrated multipole K_nL (equivalent to k_n in SAD) can be used when specifying magnetic multipole components

$$K_n L \equiv \frac{qB_n L}{P_0}$$

• where q is the charge of the reference particle (in units of the elementary charge), L is the element length, and P_0 is the reference momentum (in units of eV/c)

• In our case, K_nL can be approximately calculated by $K_nL \simeq \frac{3B_nL}{70}$

Purpose

$$A_{LR}^{f} = \frac{\sigma_{L} - \sigma_{R}}{\sigma_{L} + \sigma_{R}} = \frac{sG_{F}}{\sqrt{2}\pi\alpha Q_{f}} g_{A}^{e} g_{V}^{f} \langle Pol \rangle \propto T_{3}^{f} - 2Q_{f} \sin^{2}\theta_{W}$$

Design a spin rotator for SuperKEKB High Energy Ring, to polarize the spin of the electron beam in the longitudinal direction at the interaction point (IP)

• Study of asymmetry between the identical processes with different electron beam handedness, which provides precision electroweak measurements; requires longitudinal polarization at the IP

University of Victoria

Spin Dynamics

The spin motion in external EM field is described by Thomas-BMT equation (ignoring the E field):

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m\gamma} \left((1 + a\gamma) \vec{B}_{\perp} + (1 + a) \vec{B}_{\parallel} \right)$$

The rotation vector is given by:

$$\overrightarrow{\Omega} = -\frac{q}{m\gamma} \left((1 + a\gamma) \overrightarrow{B}_{\perp} + (1 + a) \overrightarrow{B}_{\parallel} \right)$$

$$\overrightarrow{\Omega}_{\perp} = -\frac{q}{m\gamma}(1+a\gamma)\overrightarrow{B}_{\perp} \qquad \overrightarrow{\Omega}_{//} = -\frac{q}{m\gamma}(1+a)\overrightarrow{B}_{//}$$

Rotator Magnet Structure

- Follows Uli Wienands's idea and direction:
- replace some existing ring dipoles(send) near the IP with the solenoiddipole combined function magnets and maintain the original dipole strength
- Install 6 skew-quadruple on top of each rotator section to compensate for the x-y plane coupling caused by solenoids

Simulation Tool

- **Bmad** is an open-source software library (aka toolkit)created/maintained by David Sagan at Cornell University for simulating charged particles and X-rays. Étienne Forest's "Polymorphic Tracking Code" (**PTC**) is incorporated into it.
- **Tao** is a user-friendly interface to Bmad which gives general purpose simulation, based upon Bmad.
- **Bmad** via the **Tao** interface is a powerful and user-friendly tool used for viewing lattices, doing Twiss and orbit calculations, and performing nonlinear optimization on lattices
- Optimization Algorithm: LMDIF is to minimize the sum of the squares of nonlinear functions by a modification of the Levenberg-Marquardt algorithm

 University of Victoria

Procedure of the Rot Design and Maintaining Transparency

Model the Rotator Magnet with Bmad and do Sanity Check

• Design:

- Find the appropriate dipoles to replace
- Fit the strength of solenoids

Transparency:

- Decouple the x-y plane with skew quads
- Rematch the optics by tuning ring quads near/in the rotator region
- Fix the first order chromaticity by tunning ring sextupoles
- Maintain Tune value Q (Noah Tessema will perform this step)

 University of Victoria

Skew-Quads in the L-Rot

Skew-Quads	Length (m)	Strength (T/m)	Tilt (rad)
B2EALSQ1	0.984	12.133	-0.426
B2EALSQ2	0.984	12.130	1.053
B2EALSQ3	0.984	-7.457	-0.988
B2EALSQ4	0.984	20.315	0.030
B2EALSQ5	0.984	16.350	-0.630
B2EALSQ6	0.984	19.340	1.383
B2EBLSQ1	0.984	13.266	0.651
B2EBLSQ2	0.984	-11.444	0.992
B2EBLSQ3	0.984	10.119	-1.494
B2EBLSQ4	0.984	8.024	-0.931
B2EBLSQ5	0.984	13.359	0.735
B2EBLSQ6	0.984	-4.404	0.868

Quads Comparison in the L-Rot Region

	Length	Original (k1L)	L-Rot (k1L)	Original (T/m)	L-Rot (T/m)
QD3E	0.82615	-0.175	-0.177	-4.948	-5.012
QF4E	1.01523	0.035	0.071	0.805	1.633
QEAE	0.82615	0.183	0.175	5.178	4.961
QD5E	0.82615	-0.179	-0.286	-5.074	-8.079
QF6E	0.55697	0.163	0.343	6.855	14.366
QF2E	0.55697	0.192	0.144	8.050	6.067
QD1E	1.01523	-0.255	-0.203	-5.867	-4.682

Skew-Quads in the R-Rot

Skew-Quads	Length (m)	Strength (T/m)	Tilt (rad)
B2EARSQ1	0.984	10.341	-2.610
B2EARSQ2	0.984	14.258	2.290
B2EARSQ3	0.984	1.032	2.327
B2EARSQ4	0.984	-13.451	-0.180
B2EARSQ5	0.984	14.258	-2.545
B2EARSQ6	0.984	-14.038	0.618
B2EBRSQ1	0.984	11.769	-2.480
B2EBRSQ2	0.984	12.648	2.238
B2EBRSQ3	0.984	6.663	-0.960
B2EBRSQ4	0.984	-13.429	-0.197
B2EBRSQ5	0.984	14.258	-2.846
B2EBRSQ6	0.984	-9.098	0.475

Quads Comparison in the R-Rot Region

Quadrupole	Length (m)	Original k1L	R-Rot k1L	Original (T/m)	R-Rot (T/m)
QD5E	0.82615	-0.179	-0.165	-5.074	-4.667
QEAE	0.82615	0.183	0.154	5.178	4.362
QF4E	1.01523	0.035	0.067	0.805	1.538
QD3E	0.82615	-0.175	-0.251	-4.948	-7.088
QF2E	0.55697	0.192	0.183	8.050	7.659
QD1E	1.01523	-0.255	-0.274	-5.867	-6.311
QLA10RE	0.82615	0.202	0.185	5.718	5.234
QLA9RE	0.82615	-0.237	-0.226	-6.703	-6.385
QLA8RE	0.55697	0.203	0.169	8.527	7.106
QLA7RE	0.82615	-0.192	-0.195	-5.438	-5.522
QLA6RE	0.82615	0.202	0.205	5.716	5.808

Linear Relationship Between the Chromaticity and the Sextupole Strength

$$\begin{cases} \xi_x = \sum_i m_i x_i + x_0 \\ \xi_y = \sum_i n_i x_i + y_0 \end{cases}$$

- Where ξ_{x} , ξ_{y} is the first order chromaticity
- x_i is the strength of sextupole
- m_i , n_i only depends on local optics
- x_0 , y_0 is the chromaticity when all tuning sextupoles are turned off

Sextupoles used for fixing the first order chromaticity

SD5TLE, SF4TLE, and SD3TRE pairs are turned off because the phase difference between these pairs is no longer π

	length (m)	B2(Original)	B2(Rot)	K2L(Original)	K2L(Rot)
SD3TLE	1.03	-3.577	-4.027	-7.153	-8.054
SF6TLE	0.334	0.818	1.008	1.635	2.015
SD7TLE	1.03	-3.607	-4.062	-7.214	-8.123
SD7TRE	1.03	-1.730	-4.042	-3.459	-8.084
SF6TRE	0.334	0.829	1.596	1.659	3.192
SD5TRE	1.03	-1.695	-4.088	-3.390	-8.177

Comparison of Ring Parameters With First Order Chormaticity Fixed Original

```
Х
                     Model
                                                  Model
                                                               Design
                                 Design
                                              43.580709
                                                            43.580709
                45.530994
                              45.530994
                                                                        ! Tune
           Q
                 1.593508
                                                                         dQ/(dE/E)
       Chrom
                               1.591895
                                               1.622865
                                                             1.621568
                 1.000064
                               0.999662
                                               1.000002
                                                             1.000002
                                                                         Damping Partition #
      J_damp
              4.44061E-09
                                            5.65367E-13
                                                         5.65331E-13
                                                                       ! Meters
   Emittance
                            4.44277E-09
                                                         1.78614E-04
                                                                         Damping per turn
              1.78625E-04
                            1.78553E-04
  Alpha_damp
                                            1.78614E-04
Damping_time
              5.63267E-02
                            5.63493E-02
                                            5.63302E-02
                                                          5.63302E-02
                                                                         Sec
```

Rot

```
Χ
                                 Design
                                                              Design
                    Model
                                                 Model
                45.777566
                                             44.446774
                                                           44.446774
                              45.777566
           Q
                                                                        Tune
                 1.593508
                                              1.622865
                                                            1.700876
                                                                        dQ/(dE/E)
       Chrom
                               1.541611
      J_damp
                 0.984214
                                              1.005265
                                                                        Damping Partition #
                               0.983584
                                                            1.005263
   Emittance
                           4.89356E-09
                                           4.01654E-12
                                                        4.01059E-12
              4.88965E-09
                                                                        Meters
  Alpha_damp
             1.75793E-04 1.75681E-04
                                           1.79553E-04
                                                        1.79553E-04
                                                                      ! Damping per turn
Damping_time
              5.72340E-02 5.72706E-02
                                           5.60354E-02
                                                        5.60355E-02
                                                                      ! Sec
```

