Spin Rotator Design for the SuperKEKB High Energy Ring in a Proposed Polarization Upgrade

Yuhao Peng
2021.09.27

난뉸츈 University
of Victoria

Spin Rotator

Right rotator(L-Rot) is to rotate the vertical spin to the longitudinal direction
Left rotator(R-Rot) is to rotate the longitudinal back to vertical
Our simulation is running by the positron, which runs reversely in the HER and the ring is viewed from downward to upward

(Viewed from upward to downward)
Overall spin rotation between the L-Rot and the IP:
$\sim 212.15^{\circ}$ clockwise in the x-z plane

Overall spin rotation between the IP and the R-Rot:

~203.32 ${ }^{\circ}$ clockwise in the x-z plane

Constraints of the Design

\&Transparency: Need to maintain the original beam dynamics, make the spin rotator transparent to the ring as much as possible
\&Physical constraints: All new magnets must be manufacturable and installable

- Solenoid strength can not exceed 5 T
- Skew-quad can not exceed 35 T/m

Comparison of Full Lattice

Original

Rot
 of Victoria

Comparison at L-Rot Region

Original
 of Victoria

Nㅠ뉸뉸 University

L-Rot Solenoid Strength

Solenoid	Length (m)	Strength (T)
B2EALSQ	5.9	-4.843
B2EBLSQ	5.9	-2.577

Spin Motion of e^{-}in the L-Rot Region

Comparison at R-Rot Region

Spin motion of e^{-}in the R-Rot Region

Nㅠㅊ뉸뉸 University of Victoria

R-Rot Solenoid Strength

Solenoid	Length (m)	Strength (T)
B2EARSQ	5.9	-3.608
B2EBRSQ	5.9	-3.942

Spin Motion of e^{-}in the R-Rot Region

난뉸 University

Longitudinal spin alignment at the IP

- The spin track result shows a longitudinal spin alignment >99.99\% with the rotator installed in the High Energy Ring

Spin Component	Entrance of Rot	IP	Exit
\mathbf{X}	-0.0000032792024300	-0.0000044677361868	-0.0000063748934711
\mathbf{Y}	0.9999999999802550	0.0000026796195603	0.9999999999793680
\mathbf{Z}	-0.0000053600276775	0.9999999999864290	0.0000007825194459

Spin motion of e^{-}between the L-Rot and the IP(All)

At region(1)

index	name	key	$\mathbf{s}(\mathbf{m})$	$\mathbf{l}(\mathbf{m})$	spin.x	spin.y	spin.z
1593	LTL088	Drift	118.08	1.28	0.179917	-0.000922238	0.983681
1595	LTL089	Drift	119.09	0.18	0.179917	-0.000922041	0.983681
1597	LTL090	Drift	119.18	0.08	0.179917	-0.000922041	0.983681
1599	LTL091	Drift	128.61	9.09	0.179917	-0.000922041	0.983681
1601	LTL092	Drift	129.63	0.18	0.179917	-0.000922171	0.983681
1603	LTL093	Drift	129.71	0.08	0.179917	-0.000922171	0.983681
1605	LTL094	Drift	133.31	3.25	0.179917	-0.000922171	0.983681
1607	LTL095	Drift	133.74	0.08	0.179917	-0.000922171	0.983681
1609	LTL096	Drift	133.93	0.18	0.179917	-0.000922171	0.983681
1611	LTL097	Drift	134.94	0.18	0.179917	-0.000922024	0.983681
1612	LTL098	Drift	135.63	0.68	0.179917	-0.000922024	0.983681

Notice: the table shows the spin tracking result for the positron

Notice: the table shows the spin tracking result for the positron

Spin motion of e^{-}between the IP and the R-Rot(All)

18

Appendix

The normalized integrated multipole $K_{n} L$ (equivalent to k_{n} in SAD) can be used when specifying magnetic multipole components

$$
K_{n} L \equiv \frac{q B_{n} L}{P_{0}}
$$

- where q is the charge of the reference particle (in units of the elementary charge), L is the element length, and P_{0} is the reference momentum (in units of eV/c)
- In our case, $K_{n} L$ can be approximately calculated by $K_{n} L \simeq \frac{3 B_{n} L}{70}$

Purpose

$$
A_{L R}^{f}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=\frac{s G_{F}}{\sqrt{2} \pi \alpha Q_{f}} g_{A}^{e} g_{V}^{f}\langle\mathrm{Pol}\rangle \propto T_{3}^{f}-2 Q_{f} \sin ^{2} \theta_{W}
$$

Design a spin rotator for SuperKEKB High Energy Ring, to polarize the spin of the electron beam in the longitudinal direction at the interaction point (IP)

- Study of asymmetry between the identical processes with different electron beam handedness, which provides precision electroweak measurements; requires longitudinal polarization at the IP

Spin Dynamics

The spin motion in external EM field is described by Thomas-BMT equation (ignoring the E field):
$\frac{d \vec{s}}{d t}=\vec{\Omega} \times \vec{S}=-\frac{q}{m \gamma}\left((1+a \gamma) \vec{B}_{\perp}+(1+a) \vec{B}_{/ /}\right)$

The rotation vector is given by :

$$
\begin{aligned}
& \vec{\Omega}=-\frac{q}{m \gamma}\left((1+a \gamma) \vec{B}_{\perp}+(1+a) \vec{B}_{/ /}\right) \\
& \vec{\Omega}_{\perp}=-\frac{q}{m \gamma}(1+a \gamma) \vec{B}_{\perp} \quad \vec{\Omega}_{/ /}=-\frac{q}{m \gamma}(1+a) \vec{B}_{/ /}
\end{aligned}
$$

Rotator Magnet Structure

- Follows Uli Wienands's idea and direction:
- replace some existing ring dipoles(send) near the IP with the solenoiddipole combined function magnets and maintain the original dipole strength
- Install 6 skew-quadruple on top of each rotator section to compensate for the $x-y$ plane coupling caused by solenoids

Simulation Tool

- Bmad is an open-source software library (aka toolkit)created/maintained by David Sagan at Cornell University for simulating charged particles and X-rays. Étienne Forest's "Polymorphic Tracking Code" (PTC) is incorporated into it.
- Tao is a user-friendly interface to Bmad which gives general purpose simulation, based upon Bmad.
- Bmad via the Tao interface is a powerful and user-friendly tool used for viewing lattices, doing Twiss and orbit calculations, and performing nonlinear optimization on lattices
- Optimization Algorithm: LMDIF is to minimize the sum of the squares of nonlinear functions by a modification of the Levenberg-Marquardt algorithm

Procedure of the Rot Design and Maintaining Transparency

- Model the Rotator Magnet with Bmad and do Sanity Check
-Design:
- Find the appropriate dipoles to replace
- Fit the strength of solenoids
-Transparency:
- Decouple the $x-y$ plane with skew quads
- Rematch the optics by tuning ring quads near/in the rotator region
- Fix the first order chromaticity by tunning ring sextupoles
- Maintain Tune value Q (Noah Tessema will perform this step)

Skew-Quads in the L-Rot

Skew-Quads	Length (m)	Strength (T/m)	Tilt (rad)
B2EALSQ1	0.984	12.133	-0.426
B2EALSQ2	0.984	12.130	1.053
B2EALSQ3	0.984	-7.457	-0.988
B2EALSQ4	0.984	20.315	0.030
B2EALSQ5	0.984	16.350	-0.630
B2EALSQ6	0.984	19.340	1.383
B2EBLSQ1	0.984	13.266	0.651
B2EBLSQ2	0.984	-11.444	0.992
B2EBLSQ3	0.984	10.119	-1.494
B2EBLSQ4	0.984	8.024	-0.931
B2EBLSQ5	0.984	13.359	0.735
B2EBLSQ6	0.984	-4.404	0.868

Quads Comparison in the L-Rot Region

	Length	Original (k1L)	L-Rot (k1L)	Original (T/m)	L-Rot (T/m)
QD3E	0.82615	-0.175	-0.177	-4.948	-5.012
QF4E	1.01523	0.035	0.071	0.805	1.633
QEAE	0.82615	0.183	0.175	5.178	4.961
QD5E	0.82615	-0.179	-0.286	-5.074	-8.079
QF6E	0.55697	0.163	0.343	6.855	14.366
QF2E	0.55697	0.192	0.144	8.050	6.067
QD1E	1.01523	-0.255	-0.203	-5.867	-4.682

Skew-Quads in the R-Rot

Skew-Quads	Length (\mathbf{m})	Strength (T/m)	Tilt (rad)
B2EARSQ1	0.984	10.341	-2.610
B2EARSQ2	0.984	14.258	2.290
B2EARSQ3	0.984	1.032	2.327
B2EARSQ4	0.984	-13.451	-0.180
B2EARSQ5	0.984	14.258	-2.545
B2EARSQ6	0.984	-14.038	0.618
B2EBRSQ1	0.984	11.769	-2.480
B2EBRSQ2	0.984	12.648	2.238
B2EBRSQ3	0.984	6.663	-0.960
B2EBRSQ4	0.984	-13.429	-0.197
B2EBRSQ5	0.984	14.258	-2.846
B2EBRSQ6	0.984	-9.098	0.475

Quads Comparison in the R-Rot Region

Quadrupole	Length (m)	Original k1L	R-Rot k1L	Original (T/m)	R-Rot (T/m)
QD5E	0.82615	-0.179	-0.165	-5.074	-4.667
QEAE	0.82615	0.183	0.154	5.178	4.362
QF4E	1.01523	0.035	0.067	0.805	1.538
QD3E	0.82615	-0.175	-0.251	-4.948	-7.088
QF2E	0.55697	0.192	0.183	8.050	7.659
QD1E	1.01523	-0.255	-0.274	-5.867	-6.311
QLA10RE	0.82615	0.202	0.185	5.718	5.234
QLA9RE	0.82615	-0.237	-0.226	-6.703	-6.385
QLA8RE	0.55697	0.203	0.169	8.527	7.106
QLA7RE	0.82615	-0.192	-0.195	-5.438	-5.522
QLA6RE	0.82615	0.202	0.205	5.716	5.808

Linear Relationship Between the Chromaticity and the Sextupole Strength

$$
\left\{\begin{array}{l}
\xi_{x}=\sum_{i} m_{i} x_{i}+x_{0} \\
\xi_{y}=\sum_{i} n_{i} x_{i}+y_{0}
\end{array}\right.
$$

- Where ξ_{x}, ξ_{y} is the first order chromaticity
- x_{i} is the strength of sextupole
- m_{i}, n_{i} only depends on local optics
- x_{0}, y_{0} is the chromaticity when all tuning sextupoles are turned off

Sextupoles used for fixing the first order chromaticity

SD5TLE, SF4TLE, and SD3TRE pairs are turned off because the phase difference between these pairs is no longer π

	length (m)	B2(Original)	B2(Rot)	K2L(Original)	K2L(Rot)
SD3TLE	1.03	-3.577	-4.027	-7.153	-8.054
SF6TLE	0.334	0.818	1.008	1.635	2.015
SD7TLE	1.03	-3.607	-4.062	-7.214	-8.123
SD7TRE	1.03	-1.730	-4.042	-3.459	-8.084
SF6TRE	0.334	0.829	1.596	1.659	3.192
SD5TRE	1.03	-1.695	-4.088	-3.390	-8.177

Comparison of Ring Parameters With First Order Chormaticity Fixed

Original

		X		Y	
	Model	Design	Model	Design	
Q	45.530994	45.530994	43.580709	43.580709	! Tune
Chrom	1.593508	1.591895	1.622865	1.621568	! dQ/(dE/E)
J_damp	1.000064	0.999662	1.000002	1.000002	! Damping Partition \#
Emittance	4.44061E-09	4.44277E-09	$5.65367 \mathrm{E}-13$	5.65331E-13	! Meters
Alpha_damp	$1.78625 \mathrm{E}-04$	$1.78553 \mathrm{E}-04$	$1.78614 \mathrm{E}-04$	1.78614E-04	! Damping per turn
Damping_time	$5.63267 \mathrm{E}-02$	5.63493E-02	$5.63302 \mathrm{E}-02$	5.63302E-02	! Sec

Rot

