Beam Polarimetry with Taus for an Upgraded SuperKEKB

Caleb Miller

Oct 18, 2021

Beam Polarization Motivation

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electro-weak parameters. Including A_{LR} for e,µ, τ ,c,b

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_f S}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle P \rangle \propto T_3^f$$

 $\int_{2}^{f} - 2Q_f \sin^2 \theta_W$

Beam Polarization Motivation

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electroweak parameters. Including A_{LR} for e,μ,τ,c,b

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_f S}{4\pi\alpha Q_f} \right) g_A^e g_V^f (P) \propto T$$

SuperKEKB precise measurements of electro-

 $\Gamma_3^f - 2Q_f \sin^2 \theta_W$

bars show expected sensitivity of future experiments

Belle expects: $\sigma(\sin_2\theta_W) \approx 0.0002$ (40 ab⁻¹)

Polarization Sensitivity in Tau Decays

The kinematics of the $\tau \rightarrow \pi v$ provide a powerful insight into the polarization

Pion Momentum, Polarization Sensitivity

- Polarization sensitivity is mirrored between the forward and backward region of the detector
- Theta is defined as the angle between the pion and the electron beam direction

Red: Left-Handed e⁻ beam, Blue: Right-Handed e⁻ beam

Pion Angular Distribution, Polarization Sensitivity

Using momentum and $\cos\theta$ gives together improves sensitivity

Unpolarized e⁻ beam, $\pi^- \cos\theta$ distribution

Event Selection

- We developed the technique on BaBar
 - Using 32.28 fb⁻¹ as a blind sample (424.18 fb⁻¹ On-peak data available)
- We tag tau events by $\tau^{\pm} \rightarrow \pi^{\pm} n \pi^{o} v$
 - One charged track, n π^{o} s in 115 MeV < $M_{\pi^{0}}$ < 155 MeV
- Signal is $\tau^{\pm} \rightarrow \pi^{\pm} \nu$
 - Require no neutrals in signal hemisphere
 - Fail muon and electron PID
- P_T>1.2 GeV to remove 2 photon backgrounds
- Gives 98% pure tau sample
- $60\% \tau^{\pm} \rightarrow \pi^{\pm} \nu$ decays

υτ

ν

Event Selection

- Largest background source is uds
- MC predicted number of events in the selected data sample

	Luminosity Scaled Events	Ratio
uds	4469	0.0167
$c\overline{c}$	113	0.0004
bhabhas	1051	0.0039
$\mu\mu$	27	0.0001
au au	262329	0.9789
$\tau \to e \nu \nu$	5366	0.0200
$\tau ightarrow \mu \nu \nu$	45018	0.1680
$\tau \to \pi \nu$	163213	0.6090
$\tau \rightarrow \text{else}$	48732	0.1818

Polarization Fit

- We employ the Barlow&Beeston¹ template fit methodology
- MC and data is binned in 2D histograms of momentum vs $\cos\theta$
- Polarized tau MC was generated to be able to measure the polarization
- The unpolarized MC is split into 3 statistically independent sets to make 3 data-like samples
- The data (or data-like MC) is fit as a linear combination of the templates

$$D = a_{l}L + a_{r}R + a_{b}B + a_{m}M + a_{u}U$$
$$\sum_{l} a_{l} \equiv 1$$
$$\langle P \rangle \equiv a_{l} - a_{r}$$

L=Left Polarized Tau MC, R=Right Polarized Tau MC, B=Bhabha(e⁺e⁻),M=µµ, U=uds, C=cc

¹R. Barlow, C. Beeston; Computer Physics Communications, Volume 77, Issue 2, 1993, Pages 219-228, https://doi.org/10.1016/0010-4655(93)90005-W

 $+a_{c}C$

Template Example

• Templates for the tau MC

Left-handed e⁻ beam, π^- distribution

Unpolarized e⁻ beam, π^- distribution

Right-handed e^{-} beam, π^{-} distribution

 $\tau \to else$

Fit Results and Systematic Uncertainties

	Positive Charge	Negative C	harge	Com
MC 1	-0.0064 ± 0.0156	0.0093±0	.0158	(
MC 2	$-0.0018 {\pm} 0.0156$	-0.0369 ± 0	.0158	-(
MC 3	$-0.0038 {\pm} 0.0155$	$0.0036 {\pm} 0$.0157	-(
Data	$0.0258{\pm}0.0164$	-0.0027±0	.0167	(
	BaBar beam polari	zation fit, 32.2	8 fb ⁻¹ st	udy sa
	Study		Syste	matic
	Muon PID		0.003	0
	Neutral Clus	sters	0.002	24
	Momentum	Resolution	0.001	.5
	Electron PII	0	0.001	2
	BGFTau		0.000	9
	Other		0.000)7
	Total		0.004	-5

Summary of dominant systematic uncertainties

nbined Average 0.0013 ± 0.0111 0.0191 ± 0.0111 0.0002 ± 0.0110 0.0118 ± 0.0117

mple

Absolute Polarization Sensitivity

By mixing the polarized tau MC together, data-like samples with any beam polarization can be created and measured

-1

Babar Summary

- Currently muon PID systematic is the most significant however there are large MC statistical uncertainties associated with it
 - Muon PID $\sigma_{svs}=0.3\%\pm0.2\%$
- Run 5 studies(~30% of data) show the MC there has a much smaller uncertainity
 - Muon PID Run 5 σ_{svs} =x.x%±0.05%
- We have approval to unblind and are in the process of doing so
- Run 5 is expected to give strong evidence for the "true" systematic uncertainties
- Run 3 polarization measurement:

$\langle P \rangle = 0.012 \pm 0.012_{\text{stat}} \pm 0.0045_{\text{sys}}$

Initial Belle II Event Selection

- Initial Belle II studies carried out by Dhwani Sutariya
- Found an initial selection with high purity
- Muon PID cuts seem to introduce bias
- Selection:
 - 2 charged tracks
 - 2 photons /neutral clusters
 - π^{o} within 80 MeV < $M_{\pi^{0}}$ < 200 MeV
 - Tag particles and signal track on opposite sides of thrust plane
 - TauGeneric skim
 - $-0.7 < \cos \theta < 0.7$
 - E/p < 0.8
 - Visible Energy of Event > 2.5 GeV
 - Transverse Momentum > 1 GeV
 - Muon PID

 υ_{τ}

 \mathbf{v}

CMS Momentum without Muon PID

Figure 68: CMS momentum distribution for π^+ (left) and π^- (right)

CMS $\cos\theta$ without Muon PID

Figure 69: CMS $cos\theta$ for π^+ (left) and π^- (right)

CMS Momentum with muon PID veto

Figure 72: CMS momentum distribution for π^+ (left) and π^- (right)

CMS $\cos\theta$ with muon PID veto

Figure 73: CMS $cos\theta$ for π^+ (left) and π^- (right)

Conclusions

- BaBar research is progressing, will have unblinded results soon
- Paper on BaBar results expected by the end of the year
- Belle II studies show strong evidence for similar performance
- Muon PID studies were done without PID corrections
 - Corrections are available but not able to be implemented this summer

