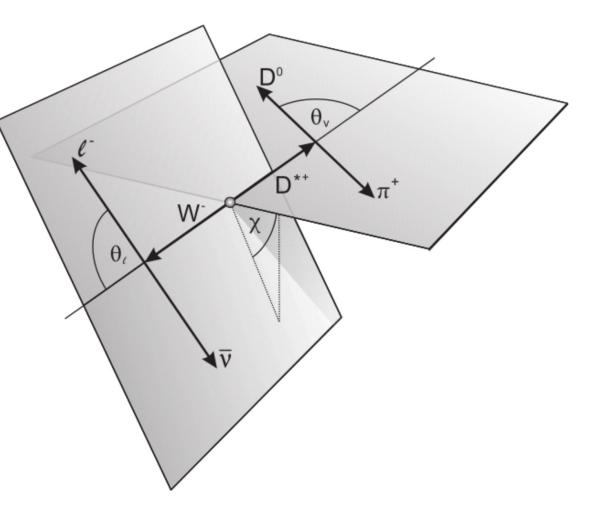


Slow pion reconstruction at HEPHY

Christoph Schwanda Institute of High Energy Physics, Austrian Academy of Sciences

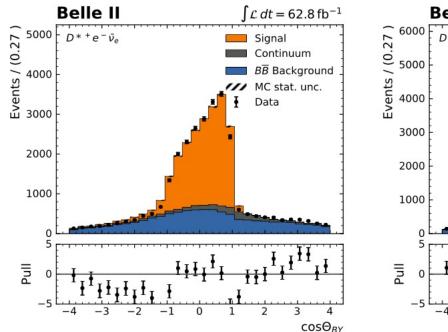
Outline

• In this talk, I would like to comment on the physics impact of slow pion reconstruction on two analyses done in Vienna:

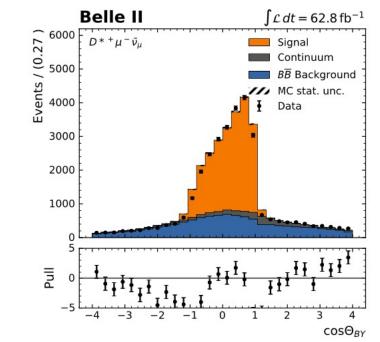

1. $B^0 \rightarrow D^{*-}(\overline{D}^0 \pi^-)$ l⁺ v untagged (Daniel Dorner, Sebastian Dorer)

2. $B^+ \rightarrow \overline{D}^0 I^+ \nu$ untagged (Philipp Horak)

$B \rightarrow D^*(D\pi) | v untagged$

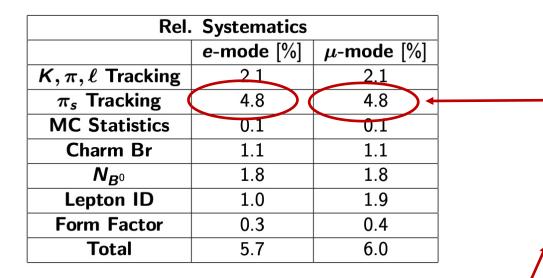

- D^{*+} is searched for in the decays modes D^{*+} \rightarrow D⁰ π^+_s and D⁰ \rightarrow K⁻ π^+ , where π_s is the slow pion
- No requirement on the second B meson in Belle II Y(4S) event
- Inclusive reconstruction of the neutrino to determine kinematic variables of the decay (w/q², cos θ_{l} , cos θ_{v} , χ)
- Signal is extracted from the cos θ_{BY} distribution:

$$\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}, \quad Y = D^{*+}\ell$$



Belle II internal release 4 results preliminary

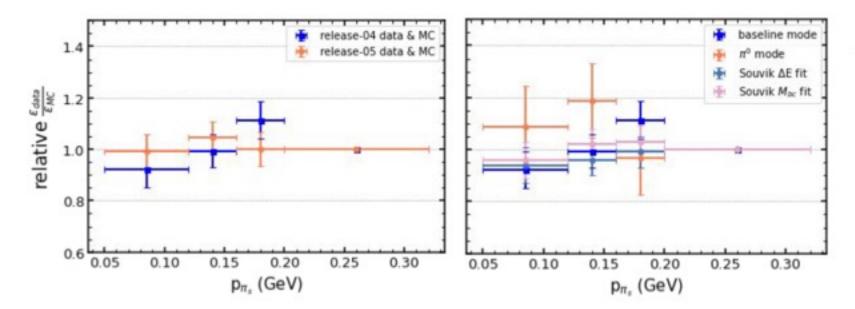
Electron mode


Muon mode

e-mode [%]4 \pm 0.056(stat.) \pm 0.277(sys.) μ -mode [%]4 \pm 0.051(stat.) \pm 0.287(sys.)combined [%]4 \pm 0.037(stat.) \pm 0.288(sys.)	Branching Fractions			
	<i>e</i> -mode [%]	$4 \pm 0.056(stat.) \pm 0.277(sys.)$		
combined [%] 4 \pm 0.037(stat.) \pm 0.288(sys.)	μ -mode [%]	4 ± 0.051 (stat.) ± 0.287 (sys.)		
	combined [%]	$4 \pm 0.037 (stat.) \pm 0.288 (sys.)$		

Statistics are not an issue for this analysis but systematics are very significant!

Belle II internal release 4 results (2)


In comparison: Belle PRD 100, 052007 (2019)

Systematics are dominated by the uncertainty in slow pion reconstruction

_						
	Source	$ ho^2$	$R_1(1)$	$R_{2}(1)$	$\mathcal{F}(1) V_{cb} ~[\%]$	$\mathcal{B}(B^0 \to D^{*-}\ell^+\nu_\ell) \ [\%]$
_	Slow pion efficiency	0.005	0.002	0.001	0.65	1.29
4	Lepton ID combined	0.001	0.006	0.004	0.68	1.38
	$\mathcal{B}(B \to D^{**}\ell\nu)$	0.002	0.001	0.002	0.26	0.52
	$B\to D^{**}\ell\nu$ form factors	0.003	0.001	0.004	0.11	0.22
	f_{+-}/f_{00}	0.001	0.002	0.002	0.52	1.06
	Fake e/μ	0.004	0.006	0.001	0.11	0.21
	Continuum norm.	0.002	0.002	0.001	0.03	0.06
	${ m K}/\pi~{ m ID}$	< 0.001	< 0.001	< 0.001	0.39	0.77
	Fast track efficiency	-	-	-	0.53	1.05
	$N\Upsilon(4S)$	-	-	-	0.68	1.37
	B^0 lifetime	-	-	-	0.13	0.26
	$\mathcal{B}(D^{*+} o D^0 \pi_s^+)$	-	-	-	0.37	0.74
	${\cal B}(D^0 o K\pi)$	-	-	-	0.51	1.02
	Total systematic error	0.008	0.009	0.007	1.60	3.21

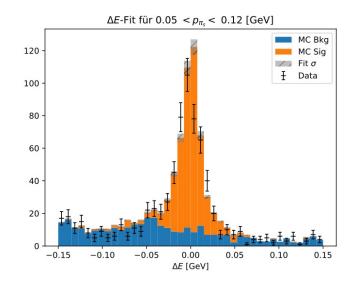
Slow pion efficiency

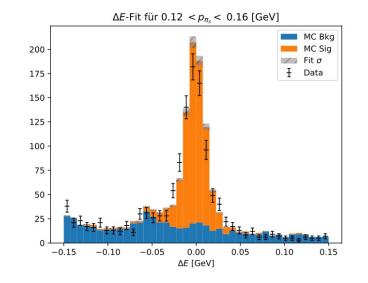
- Results on MC14ri_a vs proc12_chunk1 + buckets 16-20 data are available
- No significant change in results going from release-4 to release-5 data and MC
- Consistent results b/w two analysis teams (Chaoyi et al, and Souvik et al)
- Tried decay chain containing π⁰, but the postfit distributions are not ideal. Plan to try π⁰ efficiency correction in future.

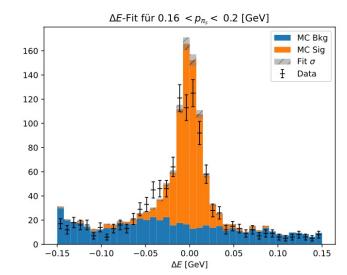
 There is also a third study from J. Borah *et al*, inspired by the inclusive D⁰ method from BABAR. Progressing well (see update <u>here</u>).

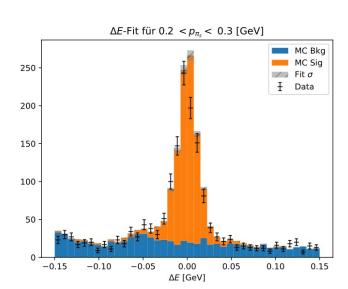
Provides an independent cross-check that can benefit from higher statistics and wider momentum coverage. Backgrounds more challenging.

BELLE2-NOTE-PH-2020-036


S. Maity (IIT Bhubaneswar), S. Ipsita (IIT Hyderabad) C. Lyu, F. Bernlochner (Bonn)

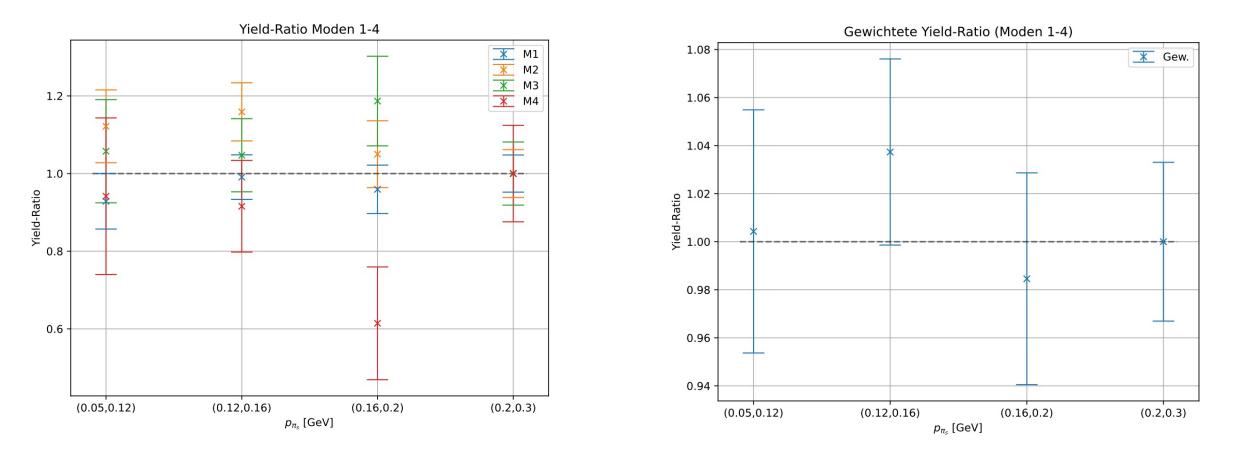

Relative π_s efficiency

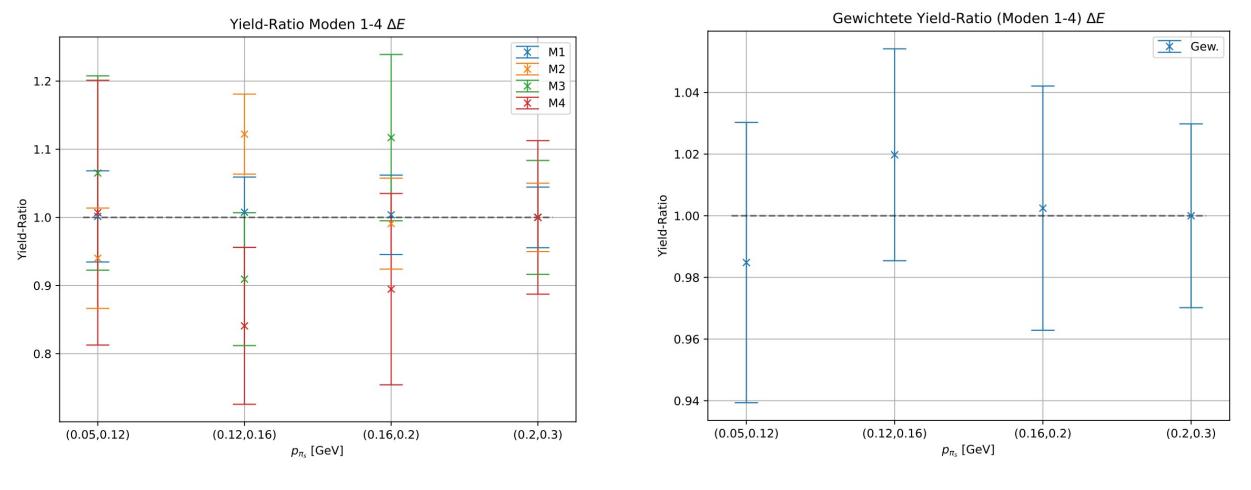

- Reconstruct $B^0 \rightarrow D^{*-}(\overline{D}^0 \pi^-) \pi^+$ in data and MC
- Measure relative yields in bins of π_s momentum
- Normalise highest momentum bin to 1


• 4 D⁰ modes
1.
$$\bar{D}^0 \rightarrow K^+ \pi^-$$

2. $\bar{D}^0 \rightarrow K^+ \pi^- \pi^+ \pi$
3. $\bar{D}^0 \rightarrow K^+ \pi^- \pi^0$
4. $\bar{D}^0 \rightarrow K_s \pi^- \pi^+$

Fit results, e.g., Delta E, Mode 1




Overall results M_{bc} fit preliminary

Individual D modes

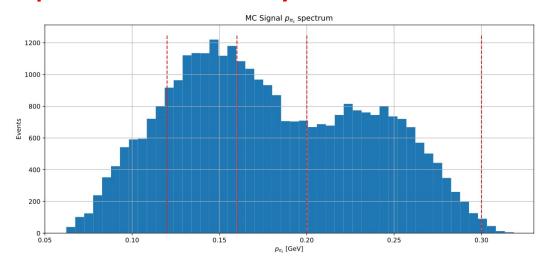
Weighted mean

Overall results Delta E fit preliminary

Individual D modes

Weighted mean

Numerical results (π_s error) preliminary

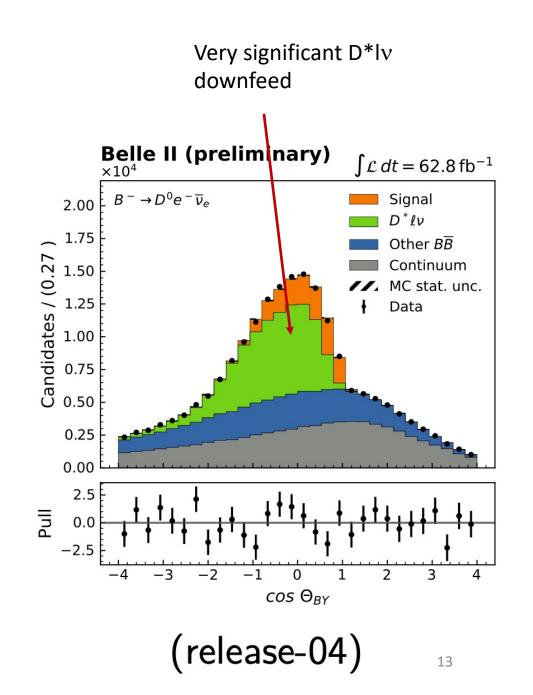

 M_{bc} fit

Bin	Rel. Err [%]
(0.05, 0.12)	5.04
(0.12, 0.16)	3.73
(0.16, 0.2)	4.48
(0.2, 0.3)	3.3

Delta E fit

Bin	Rel. Err [%]
(0.05, 0.12)	4.62
(0.12, 0.16)	3.37
(0.16, 0.2)	3.95
(0.2, 0.3)	2.98

Average over π_s spectrum preliminary


Bin	% of events
(0.05, 0.12)	0.15
(0.12, 0.16)	0.27
(0.16, 0.2)	0.22
(0.2, 0.3)	0.36

Fit typerel. error [%]Mbc 3 Modes4.50deltaE 3 Modes3.91Mbc 4 Modes3.94deltaE 4 Modes3.54					
			Modest improvement compared to the current Belle II value though still far from Belle		

$B^+ \rightarrow \overline{D}{}^0 I^+ \nu$ untagged

- Very similar to previous analysis
 - D⁰ is searched for in the K- pi+ mode
 - No requirement on second B
 - Yield is extracted from $\cos\theta_{\text{BY}}$
- Branching fraction [arXiv:2110.02648]

 $\mathcal{B}(B^- \to D^0 \ell^- \overline{\nu}_\ell) = (2.29 \pm 0.05_{\text{stat}} \pm 0.08_{\text{syst}})\%$

D* veto

To suppress D^* downfeed, implement 2 vetos: $\blacksquare B^0 \to [D^{*+} \to D^0 \pi^+] \ell^- \nu_{\ell}$ Slow π : p < 0.35 GeV ■ 144 MeV < $m_{D^*} - m_D < 148$ MeV $\blacksquare B^+ \to [D^{*0} \to D^0 \ [\pi^0 \to \gamma\gamma]] \ \ell^+ \nu_{\ell}$ • $\pi^0 \rightarrow \gamma \gamma$ selection criteria from recommendations* ■ 141 MeV $< m_{D^*} - m_D < 145$ MeV • Opening angle of $D^0\pi^0 < 17^\circ$

D* veto (2)

	Before D*+ veto cuts	After D*+ veto cuts
D*+ events	180k	66k
D*0 events	310k	304k

- Veto leakage is about 37%
 - mostly due to missing π_s
 - could be improved by better ps reconstruction
- Not entirely clear how much this would improve the overall result (D*0)

Summary

- Slow pion reconstruction affects affects ongoing measurements of the CKM element $|V_{cb}|$ from exclusive decays in various ways
- $B^0 \rightarrow D^{*-}I^+\nu$
 - Here, precise understanding of the slow pion effeciency is most crucial
 - It would be desirable to also develop _absolute_ measurements of the slow pion efficiency
- $B^{-} \rightarrow D^{0} I_{V}$
 - Better slow pion reconstruction will improve the D*+ veto and reduce downfeed from B \rightarrow D*Iv
 - However, downfeed background from D^{*0} is still substantial. So, not clear how much the overall result can improve

Thank you for your attention!