Importances of Slow Pion Reconstruction in Semileptonic B Decays

Florian Bernlochner, Lu Cao

FSP workshop: slow pion tracking 08 Nov 2021

Inclusive $B \rightarrow X_u \ell v$ Decays

Overview

- Measurements challenging due to high background from $B{\rightarrow}~X_c~l\nu$
- Large component of charmed background involves $D^{\star} \rightarrow D\pi$ decay (~68% of D* BR)
- Due to small mass difference between D* and D, emitted π_{slow} < ~220 MeV c.m.s
- Slow pions is a "feature" of such decay and needed in reconstructing D*

```
Fight direction of \pi_{slow} is
strong correlationd with D<sup>*</sup>,
four-momentum of D<sup>*</sup> can be
approximately reconstructied
from \pi_{slow} as
```


$$\begin{split} M_{\text{miss},D^*}^2 &= (p_{\text{sig}} - p_{D^*} - p_{\ell})^2,\\ \cos \theta_{B,D^*\ell} &= \frac{2E_{\text{beam}}E_{D^*\ell} - m_B^2 - m_{D^*\ell}^2}{2|\mathbf{p}_B||\mathbf{p}_{D^*\ell}|},\\ \cos \theta^* &= \frac{\mathbf{p}_{\ell} \cdot \mathbf{p}_{D^*}}{|\mathbf{p}_{\ell}||\mathbf{p}_{D^*}|}, \end{split}$$

Powerful discriminate variables for separating signal and bkg

Inclusive $B \rightarrow X_u \ell v$ Decays

Backgroun suppression features related to slow pion

- Use machine learning (BDT) to suppress backgrounds with 11 trainning features
- Slow pion related features gain high ranking of importanfe
 - π⁺_{slow}: f4, f8, f9
 - π⁰_{slow}: f5, f7, f10

Measurement of R(D) and R(D*)

Overview

$$R = \frac{b \to q \,\tau \bar{\nu}_{\tau}}{b \to q \,\ell \bar{\nu}_{\ell}} \\ \downarrow \qquad \qquad \ell = e, \mu$$

Obs.	Current World Av./Data	Current SM Prediction	Significance
$\mathcal{R}(D)$	0.340 ± 0.030	0.299 ± 0.003	1.2σ
$\mathcal{R}(D^*)$	0.295 ± 0.014	0.258 ± 0.005	$2.5\sigma \int^{5.10}$
$P_{ au}(D^*)$	$-0.38\pm0.51^{+0.21}_{-0.16}$	-0.501 ± 0.011	0.2σ
$F_{L, au}(D^*)$	$0.60 \pm 0.08 \pm 0.04$	0.455 ± 0.006	1.6σ
$\mathcal{R}(J\!/\!\psi)$	$0.71 \pm 0.17 \pm 0.18$	0.2582 ± 0.0038	1.8σ
$\mathcal{R}(\pi)$	1.05 ± 0.51	0.641 ± 0.016	0.8σ
$\mathcal{R}(D)$	0.337 ± 0.030	0.299 ± 0.003	1.3σ
$\mathcal{R}(D^*)$	$\boldsymbol{0.298 \pm 0.014}$	0.258 ± 0.005	2.5σ

All experimental results of simultaneous R(D/D*) are **anti-correlated**; contributing factor **D* downfeed** into **D** reconstruction **categories**

Measurement of R(D) and R(D*)

Down-feed & anti-correlations

DESY.

Summary

- Slow pion is a crutial final state particles in many semipletonic decays, either as signal or important background
- Correct reconstruction of four-momentum of slow pion is important for those physics analyses
- Improvement of slow pion tracking efficiency performance/precision is needed

slow... but vital !!!