Spin Rotator Design for the SuperKEKB High Energy Ring in a **Proposed Polarization Upgrade**

Yuhao Peng 2021.10.19

1

-1.0-0.5 0.0 、_{0.5} Υ 1.0

1.5 2.0

Right rotator(R-Rot) is to rotate the longitudinal back to vertical

the ring is viewed from downward to upward

Spin Rotator

- Left rotator(L-Rot) is to rotate the vertical spin to the longitudinal direction
- Our simulation is running by the positron, which runs reversely in the HER and

(Lab View) Overall spin rotation between the L-Rot and the IP: ~212.15° clockwise in the x-z plane

Overall spin rotation between the IP and the R-Rot: ~203.32° clockwise in the x-z plane

Rotator Magnet Structure • Follows Uli Wienands's idea and direction:

- replace some existing ring dipoles(send) near the IP with the solenoiddipole combined function magnets and maintain the original dipole strength to keep the geometry
- Install 6 skew-quadruple on top of each rotator section to compensate for the x-y plane coupling caused by solenoids

Hkick Simulation

Rotator modelling requires a combination of dipole and solenoidquadrupole

- dipole-solenoid-quadrupole
- simulate the dipole(sbend)

Bmad has the solenoid-quadrupole but does not have the

Following David Sagan's suggestion, use hkick(horizontal kick) to

Patch Elements

Sbend is a curved element, but hkick is a straight element

- To simulate the curved element by a straight element, the hkick is sliced into small pieces and use patch elements(xoffset, xpitch, zoffest) to fix the floor coordinate (match the global geometry) at the exit of each slice

Comparison of floor coord between the B2E and the Hkick after fixing the floor coord and orbit

sliced into 16 pieces, 96 in total

Stand-alone Model(6-pieces)

Slice Model In order to reduce the non-physical orbit excursion, each piece of the hkick is further

Comparison of Spin Rotation in B2E

Original B2E

#	Index	name	key	S	
	0	BEGINNING	Beginning_Ele	0.000	
	2	END	Marker	5.902	

Hkick(96 sliced)

# In	dex	name	key	S	1	spin.x	spin.y	spin.z
	0	BEGINNING	Beginning_Ele	0.000		0.000000000	0.000000000	1.0000000000
	193	END	Marker	5.902	0.000	-0.7748218525	0.000000000	0.6321796397

1 spin.x spin.y spin.z 0.0000000000 0.0000000000 1.0000000000 ___ 0.6321796395 0.000 -0.7748218527 0.0000000000

9

Comparison of Floor Coord of Full Lattice

Original Ring

#	Index 0	nam BEG	e INNING	key Beginning_	Ele	0	s .000	1	floor.x 0.0000000000
	6650	END	Marker		30	16.315	0.000	0	.0000000000

Hkick Ring (all the hkicks are 96 sliced)

#	Index	name	key	S	1	floor.x
	0	BEGINNI	NG Beginning_Ele	0.000		0.0000000000
	7414	END M	arker	3016.315	0.000	0.000000000

floor.z floor.theta floor.y floor.phi 0.0000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 -0.000000055 -6.2831853072 0.0000000000

floor.psi 0.000000000 0.000000000

floor.psi 0.000000000 0.000000000

Constraints of the Design

Transparency: Need to maintain the original beam dynamics,

Physical constraints: All new magnets must be manufacturable and installable

- Solenoid strength can not exceed 5 T
- Skew-quad can not exceed 35 T/m

make the spin rotator transparent to the ring as much as possible

Comparison of Full Lattice (positron simulation)

Comparison at L-Rot Region (Positron simulation)

Orbit [mm]

Spin Motion of e^- (rest frame) in the L-Rot Region Initial spin (at s = 2792 m)

L-Rot Solenoid Strength

Solenoid	Length (m)	Strength (T)
B2EALSQ	5.9	-4.843
B2EBLSQ	5.9	-2.577

Comparison at R-Rot Region(Positron simulation)

Spin motion of e⁻ in the R-Rot Region

Spin Motion of e^- (rest frame) in the R-Rot Region

R-Rot Solenoid Strength

Solenoid	Length (m)	Strength (T)
B2EARSQ	5.9	-3.608
B2EBRSQ	5.9	-3.942

Longitudinal spin alignment at the IP

with the rotator installed in the High Energy Ring

Spin Component	Entrance of Rot	IP	Exit
X	-0.0000032792024300	-0.0000044677361868	-0.0000063748934711
Υ	0.999999999802550	0.000026796195603	0.999999999793680
Z	-0.0000053600276775	0.999999999864290	0.0000007825194459

• The spin track result shows a longitudinal spin alignment >99.99%

Spin Motion of e^- (Lab Frame) in the SuperKEKB HER with Spin Rotator Installed

Comparison of Ring Parameters With First Order Chormaticity Fixed

Original

		Х		Υ	
	Model	Design	Model	Design	
Q	45.530994	45.530994	43.580709	43.580709	! Tune
Chrom	1.593508	1.591895	1.622865	1.621568	! dQ/(dE/E)
J_damp	1.000064	0.999662	1.000002	1.000002	! Damping Partition #
Emittance	4.44061E-09	4.44277E-09	5.65367E-13	5.65331E-13	! Meters
Alpha_damp	1.78625E-04	1.78553E-04	1.78614E-04	1.78614E-04	! Damping per turn
Damping_time	5.63267E-02	5.63493E-02	5.63302E-02	5.63302E-02	! Sec

Rot

		Х		Υ	
	Model	Design	Model	Design	
Q	45.777566	45.777566	44.446774	44.446774	! Tune
Chrom	1.593508	1.541611	1.622865	1.700876	! dQ/(dE/E)
J_damp	0.984214	0.983584	1.005265	1.005263	<pre>! Damping Partition #</pre>
Emittance	4.88965E-09	4.89356E-09	4.01654E-12	4.01059E-12	! Meters
Alpha_damp	1.75793E-04	1.75681E-04	1.79553E-04	1.79553E-04	! Damping per turn
Damping_time	5.72340E-02	5.72706E-02	5.60354E-02	5.60355E-02	! Sec

Matching the Tune Value (in progress)

านมา

Fitting target: Q_x , Q_y

- **Constraints: Matching the Twiss** parameters at the exit of the straight section ($\beta_{x,y}, \alpha_{x,y}$)
- 8 variables: QR*NE(6 different Quadruopole pairs), QDRNE, QFRNE University of Victoria

• Fixing the Tune value with tuning the ring quads at the straight section

Tracking Studies (Long Term Tracking)

specifying magnetic multipole components

 K_nL

where q is the charge of the reference particle (in units of the elementary charge), L is the element length, and P_0 is the reference momentum (in units of eV/c)

In our case, K_nL can be approximat

Appendix

The normalized integrated multipole K_nL (equivalent to k_n in SAD) can be used when

$$\equiv \frac{qB_nL}{P_0}$$

ely calculated by
$$K_n L \simeq \frac{3B_n L}{70}$$

Spin Dynamics

The spin motion in external EM field is described by Thomas-BMT equation (ignoring the E field):

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{S} = \frac{q}{m\gamma} \vec{S} \times \left((1 + m\gamma)\right)$$

q = -e for the electron

$$\frac{d\vec{s}}{ds} = \frac{d\vec{s} \, dt}{dt \, ds} = \frac{1}{v} \frac{d\vec{s}}{dt} = \frac{e}{p} \left((1 + \frac{1}{v}) \frac{d\vec{s}}{dt} - \frac{e}{p} \right)$$

$(a\gamma)\vec{B}_{\perp} + (1+a)\vec{B}_{\prime\prime\prime}$

Purpose $A_{LR}^{f} = \frac{\sigma_{L} - \sigma_{R}}{\sigma_{L} + \sigma_{R}} = \frac{sG_{F}}{\sqrt{2\pi\alpha}Q_{f}} g_{A}^{e} g_{V}^{f} \langle Pol \rangle \propto T_{3}^{f} - 2Q_{f} \sin^{2}\theta_{W}$

Design a spin rotator for SuperKEKB High Energy Ring, to polarize the spin of the electron beam in the longitudinal direction at the interaction point (IP)

measurements; requires longitudinal polarization at the IP

 Study of asymmetry between the identical processes with different electron beam handedness, which provides precision electroweak

Simulation Tool

- **Bmad** is an open-source software library (aka toolkit)created/maintained by David Sagan at Cornell University for simulating charged particles and X-rays. Étienne Forest's "Polymorphic Tracking Code" (PTC) is incorporated into it.
- **Tao** is a user-friendly interface to Bmad which gives general purpose simulation, based upon Bmad.
- Bmad via the Tao interface is a powerful and user-friendly tool used for viewing lattices, doing Twiss and orbit calculations, and performing nonlinear optimization on lattices
- Optimization Algorithm: LMDIF is to minimize the sum of the squares of nonlinear University functions by a modification of the Levenberg-Marquardt algorithm of Victoria

Procedure of the Rot Design and Maintaining Transparency

- Model the Rotator Magnet with Bmad and do Sanity Check
- Design:
 - Find the appropriate dipoles to replace • Fit the strength of solenoids
- •Transparency:
 - Decouple the x-y plane with skew quads

 - Fix the first order chromaticity by tunning ring sextupoles

•Rematch the optics by tuning ring quads near/in the rotator region Maintain Tune value Q (Noah Tessema will perform this step)
University of Victoria

Skew-Quads in the L-Rot

Skew-Quads	Length (m)	Strength (T/m)	Tilt (rad)
B2EALSQ1	0.984	12.133	-0.426
B2EALSQ2	0.984	12.130	1.053
B2EALSQ3	0.984	-7.457	-0.988
B2EALSQ4	0.984	20.315	0.030
B2EALSQ5	0.984	16.350	-0.630
B2EALSQ6	0.984	19.340	1.383
B2EBLSQ1	0.984	13.266	0.651
B2EBLSQ2	0.984	-11.444	0.992
B2EBLSQ3	0.984	10.119	-1.494
B2EBLSQ4	0.984	8.024	-0.931
B2EBLSQ5	0.984	13.359	0.735
B2EBLSQ6	0.984	-4.404	0.868

Quads Comparison in the L-Rot Region

	Length	Original (k1L)	L-Rot (k1L)	Original (T/m)	L-Rot (T/m)
QD3E	0.82615	-0.175	-0.177	-4.948	-5.012
QF4E	1.01523	0.035	0.071	0.805	1.633
QEAE	0.82615	0.183	0.175	5.178	4.961
QD5E	0.82615	-0.179	-0.286	-5.074	-8.079
QF6E	0.55697	0.163	0.343	6.855	14.366
QF2E	0.55697	0.192	0.144	8.050	6.067
QD1E	1.01523	-0.255	-0.203	-5.867	-4.682

Skew-Quads in the R-Rot

Skew-Quads	Length (m)	Strength (T/m)	Tilt (rad)
B2EARSQ1	0.984	10.341	-2.610
B2EARSQ2	0.984	14.258	2.290
B2EARSQ3	0.984	1.032	2.327
B2EARSQ4	0.984	-13.451	-0.180
B2EARSQ5	0.984	14.258	-2.545
B2EARSQ6	0.984	-14.038	0.618
B2EBRSQ1	0.984	11.769	-2.480
B2EBRSQ2	0.984	12.648	2.238
B2EBRSQ3	0.984	6.663	-0.960
B2EBRSQ4	0.984	-13.429	-0.197
B2EBRSQ5	0.984	14.258	-2.846
B2EBRSQ6	0.984	-9.098	0.475

Quads Comparison in the R-Rot Region

Quadrupole	Length (m)	Original k1L	R-Rot k1L	Original (T/m)	R-Rot (T/m)
QD5E	0.82615	-0.179	-0.165	-5.074	-4.667
QEAE	0.82615	0.183	0.154	5.178	4.362
QF4E	1.01523	0.035	0.067	0.805	1.538
QD3E	0.82615	-0.175	-0.251	-4.948	-7.088
QF2E	0.55697	0.192	0.183	8.050	7.659
QD1E	1.01523	-0.255	-0.274	-5.867	-6.311
QLA10RE	0.82615	0.202	0.185	5.718	5.234
QLA9RE	0.82615	-0.237	-0.226	-6.703	-6.385
QLA8RE	0.55697	0.203	0.169	8.527	7.106
QLA7RE	0.82615	-0.192	-0.195	-5.438	-5.522
QLA6RE	0.82615	0.202	0.205	5.716	5.808

Linear Relationship Between the Chromaticity and the Sextupole Strength

$$\begin{cases} \xi_x = \sum_i m_i x_i + x_0 \\ \xi_y = \sum_i n_i x_i + y_0 \\ i \end{cases}$$

- Where ξ_{χ} , ξ_{ν} is the first order chromaticity
- x_i is the strength of sextupole
- m_i , n_i only depends on local optics
- x_0, y_0 is the chromaticity when all tuning sextupoles are turned off

Sextupoles used for fixing the first order chromaticity

SD5TLE, SF4TLE, and SD3TRE pairs are turned off because the phase difference between these pairs is no longer π

	length (m)	B2(Original)	B2(Rot)	K2L(Original)	K2L(Rot)
SD3TLE	1.03	-3.577	-4.027	-7.153	-8.054
SF6TLE	0.334	0.818	1.008	1.635	2.015
SD7TLE	1.03	-3.607	-4.062	-7.214	-8.123
SD7TRE	1.03	-1.730	-4.042	-3.459	-8.084
SF6TRE	0.334	0.829	1.596	1.659	3.192
SD5TRE	1.03	-1.695	-4.088	-3.390	-8.177

