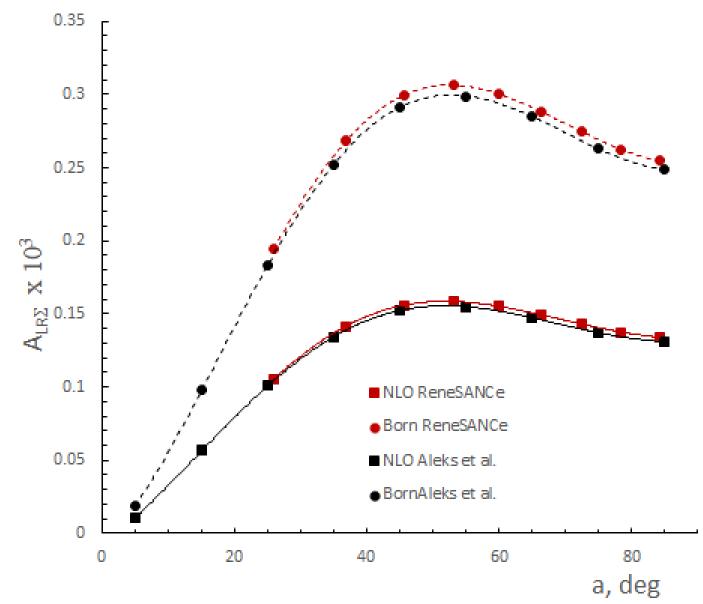
ALR calculations with ReneSANCe

Caleb Miller

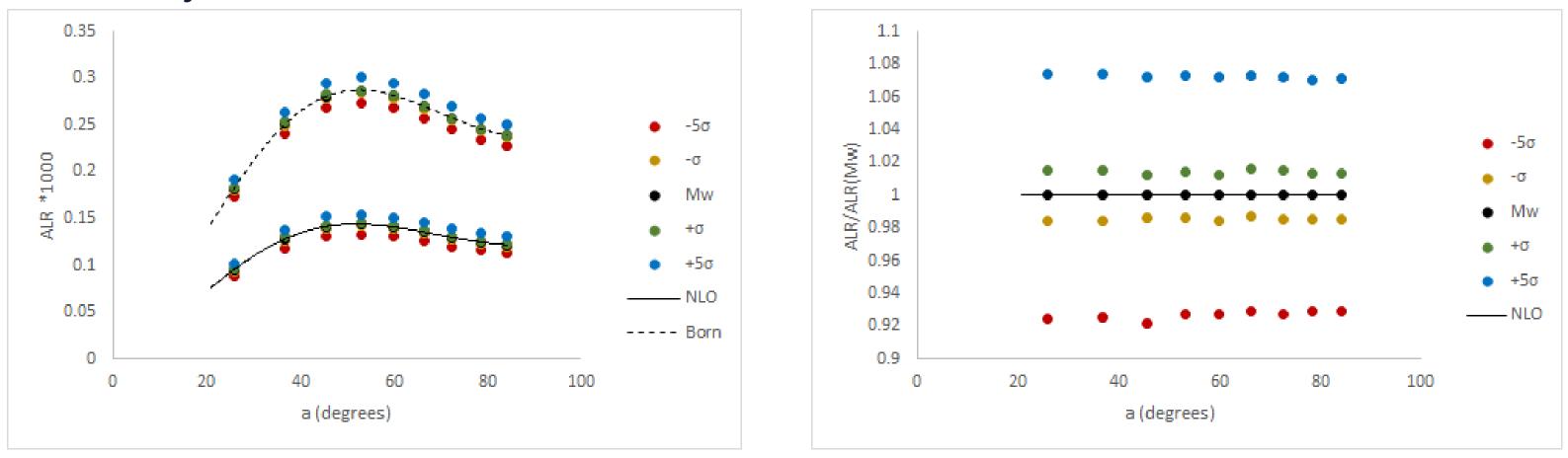
Oct 20, 2021

ReneSANCe


- ReneSANCe is a new MC generator, published June 2020
 - Renat Sadykov, Vitaly Yermolchyk, Polarized NLO EW e+e- cross section calculations with ReneSANCe-*v1.0.0* (2020); DOI:10.1016/j.cpc.2020.107445
- Capable of calculating cross-sections and 4-vectors for bhabhas, muons, taus
- Supports beam polarization in each beam
- Has special ALR modes which calculate ALR numerator and denominator in 2 cases
 - Case 1: Both beams are polarized
 - Case 2: Only the e- beam is polarized (Added at our request)
- Much quicker to calculate ALR with these modes than through event generation

ALR in Bhabha's

- Some theoretical work already published on ALR in Bhabha's
 - A.G. Aleksejevs, S.G. Barkanova, Y.M. Bystritskiy and V.A. Zykunov, "Electroweak Corrections with Allowance for Hard Bremsstrahlung in Polarized Bhabha Scattering". *Phys. Atom. Nuclei* **83**, 463–479 (2020). https://doi.org/10.1134/S1063778820030035
- A_{LR} is calculated from electrons integrated between $-\cos(a)$ and $\cos(a)$
- Positron is restricted to $0.94 > |\cos\theta|$ in ReneSANCe



ALR Calculations

- Running ReneSANCe with the ALR modes
- Positron within $|\cos\theta| < 0.94$, Electron integrated between $-\cos(a)$ and $\cos(a)$
- Adjusted value of M_W as a proxy to $\sin^2\theta_W$
- 1 sigma(12 MeV) and 5 sigma shifts in M_W correspond to ~2 and 11 in sin² θ_W (based on pdg uncertainty)

- Plot on right shows relative shift across parameter space
- Shift is on the order of 1.5%, for 2 sigma shift in $\sin^2\theta_W$

$\sin^2\theta_W = 1$

ALR Calculations

Using the A_{LR} formula we can calculate expected sensitivities

$$\boldsymbol{A_{LR}} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_f S}{4\pi\alpha Q_f} \right) \boldsymbol{g}_A^{\boldsymbol{e}} \boldsymbol{g}_V^{\boldsymbol{f}} \langle P \rangle \propto T_3^{\boldsymbol{f}}$$

- $\Delta \sin^2 \theta_W / \Delta A_{LR} \approx 100$, $\Delta g_V^e / \Delta A_{LR} \approx 200$
- Compared two angular acceptances: $|\cos\theta| < 0.90$, and $|\cos\theta| < 0.82$ (Belle II Lumi Paper acceptance)

	A _{LR}	σ(nk
$ \cos\theta < 0.90$		40.8
$ \cos\theta < 0.82$	0.00015	17.4

 $\frac{f}{3} - 2Q_f \sin^2 \theta_W$

ALR Calculations

• Using the A_{LR} formula we can calculate expected sensitivities

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_f S}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle P \rangle \propto T_3^F$$

	Acceptance	Ν	$\sigma \sin^2 \theta_W$	$\mathbf{\sigma}g_V^{\boldsymbol{e}}$
20 ab ⁻¹	$ \cos\theta < 0.90$	2.9x10 ¹¹	0.0003	0.0006
	$ \cos\theta < 0.82$	1.3x10 ¹¹	0.0004	0.0009
40 ab ⁻¹	$ \cos\theta < 0.90$	5.8x10 ¹¹	0.0002	0.0004
	$ \cos\theta < 0.82$	2.5x10 ¹¹	0.0003	0.0006
World Averages		0.00016	0.00047	

 $r_3^f - 2Q_f \sin^2 \theta_W$

Conclusions

- Working to understand difference between Aleks *et al.* and ReneSANCe at Born level
- ReneSANCe calculates a cross-section of 17.4 nb for angular acceptance of 35°-145°, in agreement with BABAYAGA@NLO as used in Belle II luminosity paper
- Generator authors are interested in our use case
 - Planning to add asymmetric beam energies in the future
- Planning to release paper on study and expected sensitivity reach at Chiral Belle
- ReneSANCe will eventually be added to basf2 framework

