# ALR calculations with ReneSANCe 

Caleb Miller

## Oct 20, 2021

## ReneSANCe

- ReneSANCe is a new MC generator, published June 2020
- Renat Sadykov, Vitaly Yermolchyk, Polarized NLO EW e+e- cross section calculations with ReneSANCev1.O.O (2020); DOI:10.1016/j.cpc.2020.107445
- Capable of calculating cross-sections and 4-vectors for bhabhas, muons, taus
- Supports beam polarization in each beam
- Has special ALR modes which calculate ALR numerator and denominator in 2 cases
- Case 1: Both beams are polarized
- Case 2: Only the e- beam is polarized (Added at our request)
- Much quicker to calculate ALR with these modes than through event generation


## ALR in Bhabha's

- Some theoretical work already published on ALR in Bhabha's
- A.G. Aleksejevs, S.G. Barkanova, Y.M. Bystritskiy and V.A. Zykunov, "Electroweak Corrections with Allowance for Hard Bremsstrahlung in Polarized Bhabha Scattering". Phys. Atom. Nuclei 83, 463-479 (2020). https://doi.org/10.1134/S1063778820030035
- $A_{L R}$ is calculated from electrons integrated between -cos(a) and $\cos (a)$
- Positron is restricted to $0.94>|\cos \theta|$ in ReneSANCe




## ALR Calculations

- Running ReneSANCe with the ALR modes

$$
\sin ^{2} \theta_{W}=1-\frac{M_{W}^{2}}{M_{Z}^{2}}
$$

- Positron within $|\cos \theta|<0.94$, Electron integrated between $-\cos (a)$ and $\cos (a)$
- Adjusted value of $\mathrm{M}_{\mathrm{W}}$ as a proxy to $\sin ^{2} \theta_{\mathrm{W}}$
- 1 sigma( 12 MeV ) and 5 sigma shifts in $\mathrm{M}_{\mathrm{W}}$ correspond to $\sim 2$ and 11 in $\sin ^{2} \theta_{\mathrm{W}}$ (based on pdg uncertainty)


- Plot on right shows relative shift across parameter space

- Shift is on the order of $1.5 \%$, for 2 sigma shift in $\sin ^{2} \theta_{\mathrm{w}}$
of Victoria


## ALR Calculations

- Using the $\mathrm{A}_{\mathrm{LR}}$ formula we can calculate expected sensitivities

$$
A_{L R}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=\frac{4}{\sqrt{2}}\left(\frac{G_{f} S}{4 \pi \alpha Q_{f}}\right) g_{A}^{e} g_{V}^{f}\langle P\rangle \propto T_{3}^{f}-2 Q_{f} \sin ^{2} \theta_{W}
$$

- $\Delta \sin ^{2} \theta_{W} / \Delta \mathrm{A}_{\mathrm{LR}} \approx 100, \Delta g_{V}^{e} / \Delta \mathrm{A}_{\mathrm{LR}} \approx 200$
- Compared two angular acceptances: $|\cos \theta|<0.90$, and $|\cos \theta|<0.82$ (Belle II Lumi Paper acceptance)

|  | $A_{\text {LR }}$ | $\boldsymbol{\sigma}(\mathbf{n b})$ |
| :--- | :--- | :--- |
| $\|\cos \theta\|<0.90$ | 0.00010 | 40.8 |
| $\|\cos \theta\|<0.82$ | 0.00015 | 17.4 |

## ALR Calculations

- Using the $\mathrm{A}_{\mathrm{LR}}$ formula we can calculate expected sensitivities

$$
A_{L R}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=\frac{4}{\sqrt{2}}\left(\frac{G_{f} S}{4 \pi \alpha Q_{f}}\right) g_{A}^{e} g_{V}^{f}\langle P\rangle \propto T_{3}^{f}-2 Q_{f} \sin ^{2} \theta_{W}
$$

|  | Acceptance | N | - $\sin ^{2} \theta_{W}$ | - $g_{V}^{e}$ |
| :---: | :---: | :---: | :---: | :---: |
| $20 \mathrm{ab}^{-1}$ | $\|\cos \theta\|<0.90$ | $2.9 \times 10^{11}$ | 0.0003 | 0.0006 |
|  | $\|\cos \theta\|<0.82$ | $1.3 \times 10^{11}$ | 0.0004 | 0.0009 |
| $40 \mathrm{ab}^{-1}$ | $\|\cos \theta\|<0.90$ | $5.8 \times 10^{11}$ | 0.0002 | 0.0004 |
|  | $\|\cos \theta\|<0.82$ | $2.5 \times 10^{11}$ | 0.0003 | 0.0006 |
| World Averages |  |  | 0.00016 | 0.00047 |

## Conclusions

- Working to understand difference between Aleks et al. and ReneSANCe at Born level
- ReneSANCe calculates a cross-section of 17.4 nb for angular acceptance of $35^{\circ}-145^{\circ}$, in agreement with BABAYAGA@NLO as used in Belle II luminosity paper
- Generator authors are interested in our use case
- Planning to add asymmetric beam energies in the future
- Planning to release paper on study and expected sensitivity reach at Chiral Belle
- ReneSANCe will eventually be added to basf2 framework

