

Introduction to T Physics

Antonio Pich

IFIC, Univ. Valencia - CSIC

2021 Belle II Physics Week November 29 – December 3

τ Physics

Decay

Production

Higgs Interactions

 $\overline{v}_{ au}$

Neutrinos

LEPTONIC DECAYS

Lepton Universality

Lepton Universality

Lepton Universality in W decays

2109.06065

_	LEP [389]	LHCb [396]	ATLAS [388,397]	CMS [391] (prelim.)	Average (prelim.)
$ g_{\mu}/g_{e} $	0.996(10)	0.990(9)	1.002(5)	1.005~(6)	1.000(3)
$ g_{ au}/g_{\mu} $	1.034(13)		0.996(7)	0.992(10)	1.001(10)
$ g_{ au}/g_{e} $	1.031(13)			0.997(11)	1.008(12)

CMS PAS SMP-18-011 (2021)

Lorentz Structure: $\ell^- \rightarrow \ell'^- \bar{\nu}_{\ell'} \nu_{\ell}$

Effective Hamiltonian:

$$\mathcal{H} = 4 \frac{G_{\ell'\ell}}{\sqrt{2}} \sum_{n,\epsilon,\omega} g^n_{\epsilon\omega} \left[\overline{\ell'_{\epsilon}} \Gamma^n(\nu_{\ell'})_{\sigma} \right] \left[\overline{(\nu_{\ell})_{\lambda}} \Gamma_n \ell_{\omega} \right]$$

Normalization: $\Gamma \propto \frac{1}{4} \left(|g_{RR}^S|^2 + |g_{RL}^S|^2 + |g_{LR}^S|^2 + |g_{LR}^S|^2 \right) + 3 \left(|g_{RL}^T|^2 + |g_{LR}^T|^2 \right) + \left(|g_{RR}^V|^2 + |g_{RL}^V|^2 + |g_{LR}^V|^2 + |g_{LL}^V|^2 \right) \equiv 1$

 $|g_{LL}^V| > 0.960 \quad (90\% \text{ CL})$

High-precision τ data needed!

HADRONIC TAU DECAY

Only lepton massive enough to decay into hadrons

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{Hadrons})}{\Gamma(\tau^- \to \nu_{\tau} \ e^- \overline{\nu_e})} \approx N_C \qquad ; \qquad R_{\tau} = \frac{1 - B_e - B_{\mu}}{B_e} = 3.637 \pm 0.011$$

$$R_{\tau} = \frac{1}{B_e^{\text{univ}}} - 1.97256 = 3.6407 \pm 0.0072 \qquad ; \qquad R_{\tau} = \frac{\text{Br}(\tau^- \to v_{\tau} + \text{Hadrons})}{B_e^{\text{univ}}} = 3.6349 \pm 0.0082$$

A. Pich

Invariant Mass Spectra

Useful tests of QCD Dynamics Form Factors Non-perturbative parameters

Resonance Chiral Theory (**R**χ**T**)

A.P., Prog. Part. Nucl. Phys. 117 (2021) 103846

$$\frac{\sigma(e^+e^- \rightarrow \text{had})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 12 \pi \operatorname{Im} \Pi_{\text{em}}(s)$$

 $\Pi_{\rm em}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{\rm em}^{\mu}(x) J_{\rm em}^{\nu}(0)] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{\rm em}(q^2)$

 $\Pi^{(J)}(s) \equiv \left| V_{ud} \right|^2 \left[\Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s) \right] + \left| V_{us} \right|^2 \left[\Pi^{(J)}_{us,V}(s) + \Pi^{(J)}_{us,A}(s) \right]$

 $\Pi_{ij,J}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{ij}^{\mu}(x)J_{ij}^{\nu}(0)^{\dagger}] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{ij,J}^{(1)}(q^2) + q^{\mu}q^{\nu} \ \Pi_{ij,J}^{(0)}(q^2)$

SPECTRAL FUNCTIONS

 τ Physics

QCD Prediction of R_{τ} **Braaten-Narison-Pich'92** $R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to \nu_{\tau} + \text{had})}{\Gamma(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu_{\tau}})} = 12\pi \int_{0}^{1} dx \, (1 - x)^{2} \Big[(1 + 2x) \, \text{Im} \, \Pi^{(1)}(x \, m_{\tau}^{2}) + \, \text{Im} \, \Pi^{(0)}(x \, m_{\tau}^{2}) \Big]$ $x \equiv s/m_{\tau}^2$ Im(s) $R_{\tau} = 6\pi i \oint_{|x|=1} dx (1-x)^2 \left[(1+2x) \Pi^{(0+1)}(x m_{\tau}^2) - 2x \Pi^{(0)}(x m_{\tau}^2) \right]$ m_{τ}^2 Re(s) $\Pi^{(J)}(s) = \sum_{D=2n} \frac{C_D^{(J)}(s,\mu) \langle O_D(\mu) \rangle}{(-s)^{D/2}}$ OPE $R_{\tau} = N_C S_{\rm EW} \left(1 + \delta_{\rm P} + \delta_{\rm NP} \right) = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$ $\delta_{\text{NIP}} = -0.0064 \pm 0.0013$ $S_{\rm FW} = 1.0201$ (3) • Marciano-Sirlin, Braaten-Li, Erler Fitted from data (Davier et al) $\delta_{\rm P} = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + 127 \ a_{\tau}^4 + \dots \approx 20\%$ $a_{\tau} \equiv \alpha_{\rm s}(m_{\tau})/\pi$; **Baikov-Chetyrkin-Kühn**

$$\begin{array}{l} \textbf{Perturbative} \quad (\textbf{m}_{q}=0) & -s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^{2}} \sum_{n=0}^{\infty} K_{n} \left(\frac{\alpha_{s}(-s)}{\pi} \right)^{n} \\ K_{0} = K_{1} = 1 \quad , \quad K_{2} = 1.63982 \quad , \quad K_{3} = 6.37101 \quad , \quad K_{4} = 49.07570 \quad \textbf{Baikov-Chetyrkin-Kühn '08} \\ \implies \qquad \delta_{P} = \sum_{n=1}^{\infty} K_{n} \; A^{(n)}(\alpha_{s}) = a_{\tau} + 5.20 \; a_{\tau}^{2} + 26 \; a_{\tau}^{3} + 127 \; a_{\tau}^{4} + \cdots \\ \textbf{Le Diberder- Pich '92} \\ A^{(n)}(\alpha_{s}) = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^{3} - x^{4}) \left(\frac{\alpha_{s}(-s)}{\pi} \right)^{n} = a_{\tau}^{n} + \cdots \quad ; \qquad a_{\tau} \equiv \alpha_{s}(m_{\tau})/\pi \\ \hline \textbf{Power Corrections} \\ \textbf{Braaten-Narison-Pich '92} \\ \delta_{NP} \approx \frac{-1}{2\pi i} \oint_{|x|=1} dx \; (1 - 3x^{2} + 2x^{3}) \sum_{n\geq 2} \frac{C_{2n} \langle O_{2n} \rangle}{(-xm_{\tau}^{2})^{n}} = -3 \frac{C_{6} \langle O_{6} \rangle}{m_{\tau}^{6}} - 2 \frac{C_{8} \langle O_{8} \rangle}{m_{\tau}^{8}} \\ \textbf{Suppressed by } m_{\tau}^{6} \qquad [additional chiral suppression in \; C_{6} \langle O_{6} \rangle^{V+A}] \end{array}$$

Spectral Function Distribution

Moments:

$$R_{\tau}^{kl}(s_0) \equiv \int_0^{s_0} ds \, \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{m_{\tau}^2}\right)^l \frac{dR_{\tau}}{ds}$$

Sensitivity to power corrections (k,l)

The non-perturbative contribution to R_{τ} can be obtained from the invariant-mass distribution of the final hadrons

Detailed analyses by ALEPH, CLEO and OPAL

$$\delta_{\rm NP} = -0.0064 \pm 0.0013$$

$$\alpha_s(m_{\tau}^2) = 0.332 \pm 0.005_{\rm exp} \pm 0.011_{\rm th}$$
Davier et al., 1312.1501
(ALEPH data)

Exhaustive Analysis of ALEPH Data

Rodríguez-Sánchez, Pich, 1605.06830

Method $(V \perp \Lambda)$	$\alpha_s(m_{\tau}^2)$			
	CIPT	FOPT	Average	
ALEPH moments ¹	$0.339 {}^{+ 0.019}_{- 0.017}$	$0.319 {}^{+ 0.017}_{- 0.015}$	$0.329 {}^{+ 0.020}_{- 0.018}$	
Mod. ALEPH moments ²	$0.338 {}^{+ 0.014}_{- 0.012}$	$0.319 {}^{+ 0.013}_{- 0.010}$	$0.329 {}^{+ 0.016}_{- 0.014}$	
$A^{(2,m)}$ moments ³	$0.336 {}^{+ 0.018}_{- 0.016}$	$0.317 {}^{+ 0.015}_{- 0.013}$	$0.326 {}^{+ 0.018}_{- 0.016}$	
s ₀ dependence ⁴	0.335 ± 0.014	0.323 ± 0.012	0.329 ± 0.013	
Borel transform ⁵	$0.328 {}^{+ 0.014}_{- 0.013}$	$0.318 {}^{+ 0.015}_{- 0.012}$	$0.323 {}^{+ 0.015}_{- 0.013}$	
Combined value	0.335 ± 0.013	0.320 ± 0.012	0.328 ± 0.013	

 $lpha_s({\sf M}_{\sf Z}^2)=0.1197\pm 0.0015$

1)
$$\omega_{kl}(x) = (1+2x)(1-x)^{2+k}x^{l}$$
 $(k,l) = (0,0), (1,0), (1,1), (1,2), (1,3)$
2) $\tilde{\omega}_{kl}(x) = (1-x)^{2+k}x^{l}$ $(k,l) = (0,0), (1,0), (1,1), (1,2), (1,3)$
3) $\omega^{(2,m)}(x) = (1-x)^{2}\sum_{k=0}^{m}(k+1)x^{k} = 1 - (m+2)x^{m+1} + (m+1)x^{m+2}$, $1 \le m \le 5$
4) $\omega^{(2,m)}(x)$ $0 \le m \le 2$, 1 single moment in each fit
5) $\omega_{a}^{(1,m)}(x) = (1-x^{m+1})e^{-ax}$ $0 \le m \le 6$

α_{s} at N³LO from τ and Z

Rodríguez-Sánchez, Pich, 1605.06830

 $\alpha_s(m_\tau^2) = 0.328 \pm 0.013$

$$\alpha_s(M_Z^2) = 0.1197 \pm 0.0015$$

 $\alpha_s (M_Z^2)_{Z \text{ width}} = 0.1199 \pm 0.0029$

Very precise test of Asymptotic Freedom

$$\alpha_s^{\tau}(M_Z^2) - \alpha_s^Z(M_Z^2) = 0.0002 \pm 0.0015_{\tau} \pm 0.0029_Z$$

V_{us} **Determination**

Gámiz-Jamin-Pich-Prades-Schwab

 $R_{\tau,S}^{00} = 0.1645 \ (23)$ $R_{\tau,V+A}^{00} = 3.4709 \ (79)$ $|V_{us}| = 0.2194 \pm 0.0016_{exp} \pm 0.0010_{th}$ $|V_{ud}| = 0.97370 \ (14)$

K₁₃: $|V_{us}| = 0.2232 \pm 0.0006$ $[f_+(0) = 0.9698 \pm 0.0017]$ FLAG 2021

Sizeable discrepancy. Improvements needed

V_{us} & V_{ud} Cabibbo Anomaly

A. Lusiani, TAU 2021

Sizeable violation of CKM unitarity

Hadronic τ Decay & New Physics

$$\mathcal{L}_{\text{eff}} = -\frac{G_F V_{ud}}{\sqrt{2}} \left[\left(1 + \epsilon_L^{\tau} \right) \bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\tau \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d + \epsilon_R^{\tau} \bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\tau \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d \right. \\ \left. + \bar{\tau} (1 - \gamma_5) \nu_\tau \cdot \bar{u} \left[\epsilon_S^{\tau} - \epsilon_P^{\tau} \gamma_5 \right] d + \epsilon_T^{\tau} \bar{\tau} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\tau \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

A. Pich

τ Physics

Bounds on Lepton Flavour Violation

$$\begin{split} & \text{Br}(\mu \to e\gamma) < 4.2 \times 10^{-13} \text{ (MEG, 90\% CL)} , \\ & \text{Br}(\text{K}_{\text{L}} \to \mu \, e) < 4.7 \times 10^{-12} \text{ (BNL-E871, 90\% CL)} , \\ & \text{Br}(\text{B}^0 \to e\,\mu) < 1.0 \times 10^{-9} \text{ (LHCb, 90\% CL)} , \end{split}$$

$$Br(Z^0 \to e \mu) < 7.5 \times 10^{-7}$$
 (ATLAS, 95% CL)

$$Br(Z^0 \to e\tau) \le 5.0 \times 10^{-6}$$
 (ATLAS, 95% CL)

$$Br(Z^0 \to \mu \tau) \le 6.5 \times 10^{-6}$$
 (ATLAS, 95% CL)

Br(μ → 3e) < 1.0 × 10⁻¹² (SINDRUM, 90% CL) Br(K⁺→ $\pi^+\mu^+e^-$) < 1.3 × 10⁻¹¹ (BNL-E865, 90% CL) Br(D⁰→ e μ) < 1.3 × 10⁻⁸ (LHCb, 90% CL)

 $Br(H \rightarrow e \mu) \le 6.1 \times 10^{-5}$ (ATLAS, 95% CL)

Br(H
$$\rightarrow$$
 e τ) < 2.2 × 10⁻³ (CMS, 95% CL)

Br(H
$$\rightarrow \mu \tau$$
) < 1.5 × 10⁻³ (CMS, 95% CL)

CP Asymmetry

$$A_{\tau} \equiv \frac{\Gamma(\tau^{+} \to \pi^{+} K_{S} \overline{\nu}_{\tau}) - \Gamma(\tau^{-} \to \pi^{-} K_{S} \nu_{\tau})}{\Gamma(\tau^{+} \to \pi^{+} K_{S} \overline{\nu}_{\tau}) + \Gamma(\tau^{-} \to \pi^{-} K_{S} \nu_{\tau})} = (-3.6 \pm 2.3 \pm 1.1) \cdot 10^{-3} \qquad \text{BaBar'11} \\ (\geq 0 \pi^{0})$$
$$A_{\tau}^{\text{SM}}(\tau^{+} \to \pi^{+} K_{S} \overline{\nu}_{\tau}) = (3.6 \pm 0.1) \cdot 10^{-3} \qquad \text{Bigi-Sanda, Grossman-Nir} \qquad 2.8 \sigma \text{ discrepancy}$$

Belle does not see any asymmetry at the 10⁻² level

Bigi-Sanda, Grossman-Nir

$$A_i^{\text{CP}} \simeq \left\langle \cos\beta\cos\psi \right\rangle_i^{\tau^-} - \left\langle \cos\beta\cos\psi \right\rangle_i^{\tau^+}$$

bins (i) of $W = \sqrt{Q^2}$

direction in hadronic rest frame

 $\psi = \tau$ direction

BaBar signal incompatible (with EFT) with other sets of flavour data

Cirigliano-Crivellin-Hoferichter, 1712.06595

Rendón-Roig-Toledo, 1902.08143

 2.8σ discrepancy

Flavour Anomaly

 3.08σ discrepancy

$$R(D^{(*)}) = \frac{\operatorname{Br}(\overline{B} \to D^{(*)}\tau^{-}\overline{\nu}_{\tau})}{\operatorname{Br}(\overline{B} \to D^{(*)}\ell^{-}\overline{\nu}_{\ell})}$$

 $F_{I}^{D^{*}} = 0.60 \pm 0.08 \pm 0.04$

$$\mathcal{R}_{J/\psi} \equiv \frac{\mathcal{B}(B_c \to J/\psi \tau \bar{\nu}_{\tau})}{\mathcal{B}(B_c \to J/\psi \mu \bar{\nu}_{\mu})} = 0.71 \pm 0.17 \pm 0.18 \quad (1.7\,\sigma) \quad \mathcal{R}_{J/\psi}^{\rm SM} \approx 0.26 - 0.28$$

A. Pich

 τ Physics $^{(1.6 \sigma)}$

 $F_{L,{
m SM}}^{D^*}=0.455\pm 0.003$

22

Effective Field Theory Analysis

$$\mathcal{H}_{eff}^{b \to c\ell\nu} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + C_{V_L} \right) \mathcal{O}_{V_L} + C_{V_R} \mathcal{O}_{V_R} + C_{S_R} \mathcal{O}_{S_R} + C_{S_L} \mathcal{O}_{S_L} + C_T \mathcal{O}_T \right] + \text{h.c.}$$

 $\mathcal{O}_{V_{L,R}} = (\bar{c} \gamma^{\mu} b_{L,R}) \left(\bar{\ell}_{L} \gamma_{\mu} \nu_{\ell L} \right), \qquad \mathcal{O}_{S_{L,R}} = (\bar{c} b_{L,R}) \left(\bar{\ell}_{R} \nu_{\ell L} \right), \qquad \mathcal{O}_{T} = (\bar{c} \sigma^{\mu\nu} b_{L}) \left(\bar{\ell}_{R} \sigma_{\mu\nu} \nu_{\ell L} \right)$

(usually with single operator/mediator and partial data information) Many analyses Freytsis et al, Bardhan et al, Cai et al, Hu et al, Celis et al, Datta et al, Bhattacharya et al, Alonso et al, ...

Global fit to all data

(q² distributions included)

Murgui-Peñuelas-Jung-Pich, 1904.09311

$F_L^{D^*}$, \mathcal{B}_{10}	Min 1	Min 2	
$\chi^2/{ m d.o.f.}$	37.4/54	40.4/54	
C_{LL}^V	$0.09 {+} 0.13 {-} 0.12$	$0.34 {+} 0.05 {-} 0.07$	$\mathcal{B}(B_{C} \rightarrow \tau \bar{\nu}) < 0$
C_{RL}^S	$0.09 {}^{+}_{-} 0.12 $	$-1.10 {+} {0.48 \atop -0.07}$	$F_L^{D^*}$ included
C_{LL}^S	$-0.14 {+} 0.52 \\ - 0.07$	$-0.30 {+} {0.11 \atop -} 0.50$	
C_{LL}^T	$0.008 \stackrel{+}{-} \stackrel{0.046}{-} 0.044$	$0.093 \mathop{+}\limits^{+} 0.029 \\ - 0.030$	

 $\bar{\nu}) < 10\%$

SUMMARY

Many interesting τ topics

- Tests of QCD and the Electroweak Theory
- Looking for Signals of New Phenomena
- Superb Tool for New Physics Searches
- Current anomalies: Better data samples needed

Lots of data will be produced @ Belle-II & LHC Improving systematics brings a great reward

Backup

2021 Belle II Physics Week

November 29 – December 3

LORENTZ STRUCTURE

			95% CL		Stahl, PDG2020
$G_{I'I}$	$n \left[\overline{H} - n \left(\right) \right]$		$\tau \rightarrow e \overline{\nu}_e \nu$	Τ	
$\mathcal{H} = 4 \frac{\alpha}{\sqrt{2}} \sum_{n.\epsilon.\omega}$	$\frac{g_{\epsilon\omega}^{n}}{g_{\epsilon\omega}^{e}}\left[l_{\epsilon}^{\prime}\right]^{n}\left(\nu_{l^{\prime}}\right)_{\sigma}$	$\left[(\nu_l)_{\lambda} \mid n l_{\omega} \right]$	$ g_{RR}^S < 0.7$	$0 g_{RR}^V < 0.17$	$ g_{RR}^T \equiv 0$
			$ g_{LR}^S < 0.9$	9 $ g_{LR}^V < 0.13$	$ g_{LR}^T < 0.082$
			$ g_{RL}^S < 2.0$	$1 g_{RL}^V < 0.52$	$ g_{RL}^T < 0.51$
			$\left g_{LL}^{S}\right < 2.0$	$ g_{LL}^V < 1.005$	$5 g_{LL}^T \equiv 0$
90% CL	Fetscher-Ge	rber, PDG2020	$\overline{\tau \to \mu \overline{\nu}_{\mu} \nu}$		
$\mu \to e \overline{\nu}_e \nu_\mu$			$ g_{RR}^S < 0.7$	$2 g_{RR}^V < 0.18$	$ g_{RR}^T \equiv 0$
$ g_{RR}^S < 0.035$	$ g_{RR}^{V} < 0.017$	$ g_{RR}^T \equiv 0$	$ g_{LR}^S < 0.9$	5 $ g_{LR}^V < 0.12$	$ g_{LR}^T < 0.079$
$ g_{LR}^{S} < 0.050$	$ g_{LR}^V < 0.023$	$ g_{LR}^{T} < 0.015$	$ g_{RL}^S < 2.0$	$1 g_{RL}^V < 0.52$	$ g_{RL}^T < 0.51$
$ g_{RL}^{S} < 0.420$	$ g_{RL}^V < 0.105$	$ g_{RL}^T < 0.105$	$ g_{LL}^S < 2.0$	$ g_{LL}^V < 1.005$	$5 g_{LL}^T \equiv 0$
$ g_{LL}^{S} < 0.550$	$ g_{LL}^V > 0.960$	$ g_{LL}^T \equiv 0$	${\tau \to \pi \nu_{\tau}}$		
$ g_{LR}^S + 6g_{LR}^I < 0.143$	$ g_{RL}^{S} + 6g_{RL}^{I} < 0.418$		$\frac{1}{ a_{-}^{V} < 0.15}$	$ a_{i}^{V} > 0.992$	
$ g_{LR}^{S} + 2g_{LR}^{I} < 0.108$	$ g_{RL}^{S} + 2g_{RL}^{I} < 0.417$		$\frac{ g_R < 0.16}{2}$	$ g_L > 0.002$	
$ g_{LR}^S - 2g_{LR}^I < 0.070$	$ g_{RL}^S - 2g_{RL}^I < 0.418$		$\underline{\tau \to \rho \nu_{\tau}}$		
$Q_{RR} + Q_{LR} < 8.2 \times 10$	-4		$ g_R^V < 0.10$	$ g_L^V > 0.995$	
			$\tau \to a_1 \nu_{\tau}$		

 $|g_R^V| < 0.16 \qquad |g_L^V| > 0.987$

Only Lepton Massive Enough to Decay into Hadrons

 $\tau^- \rightarrow v_{\tau} H^-$ probes the hadronic V-A current

 $\left\langle H^{-} \left| \overline{d}_{\theta} \gamma^{\mu} (1 - \gamma_{5}) u \right| 0 \right\rangle$

 $e^+e^- \rightarrow H^0$ probes the hadronic electromagnetic current

$$\left\langle H^{0} \left| \sum_{q} Q_{q} \; \overline{q} \, \gamma^{\mu} q \, \right| 0 \right
angle$$

Isospin:
$$\frac{\Gamma(\tau^- \to v_{\tau} V^-)}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v_e})} = \frac{3\cos^2\theta_C}{2\pi\alpha^2} S_{\rm EW} \int_0^1 dx \, (1-x)^2 (1+2x) \, x \, \sigma_{e^+ e^- \to V^0}^{I=1}(x m_{\tau}^2)$$

Models of Duality Violation

$$\Delta A_{V/A}^{\omega}(s_0) = \frac{i}{2} \oint_{|s|=s_0} \frac{ds}{s_0} \omega(s) \left\{ \Pi_{V/A}(s) - \Pi_{V/A}^{\text{OPE}}(s) \right\} = -\pi \int_{s_0}^{\infty} \frac{ds}{s_0} \omega(s) \Delta \rho_{V/A}^{\text{DV}}(s)$$

Ansatz: $\Delta \rho_{V/A}^{\text{DV}}(s) = s^{\lambda_{V/A}} e^{-(\delta_{V/A} + \gamma_{V/A} s)} \sin(\alpha_{V/A} + \beta_{V/A} s)$, $s > \hat{s}_0$

- **1)** Boito et al.: $\lambda_{V/A} = 0$, $\hat{s}_0 \sim 1.55 \text{ GeV}^2$, $\omega(x) = 1$
 - Fit s_0 dependence: $\rightarrow \{A^{(00)}(s_0), \rho(s_0 + \Delta s_0), \cdots, \rho(s_0 + (n-1)\Delta s_0)\}$
 - Direct fit of the spectral function. OPE not valid

Bad quality fit (Model dependence. Instabilities. Very low p-value)

Ansatz: $\Delta \rho_{V/A}^{\mathrm{DV}}(s) = s^{\lambda_{V/A}} e^{-(\delta_{V/A} + \gamma_{V/A} s)} \sin(\alpha_{V/A} + \beta_{V/A} s)$, $s > \hat{s}_0$

2) $\lambda_V \geq 0$: $\hat{s}_0 \sim 1.55 \text{ GeV}^2$, $\omega(x) = 1$

Rodríguez-Sánchez, A.P.

	λ_V	$lpha_s(m_ au^2)^{ extsf{FOPT}}$	δ_V	$\gamma_{oldsymbol{V}}$	α_V	$eta_{m V}$	p-value
Boito	0	0.298 ± 0.010	3.6 ± 0.5	0.6 ± 0.3	-2.3 ± 0.9	4.3 ± 0.5	5.3%
	1	0.300 ± 0.012	3.3 ± 0.5	1.1 ± 0.3	-2.2 ± 1.0	4.2 ± 0.5	5.7%
	2	0.302 ± 0.011	2.9 ± 0.5	1.6 ± 0.3	-2.2 ± 0.9	4.2 ± 0.5	6.0%
	4	0.306 ± 0.013	2.3 ± 0.5	2.6 ± 0.3	-1.9 ± 0.9	4.1 ± 0.5	6.6%
	8	0.314 ± 0.015	1.0 ± 0.5	4.6 ± 0.3	-1.5 ± 1.1	3.9 ± 0.6	7.7 %

- Fitted α_s is model dependent
- $\lambda_V = 0$ (Boito) gives the worse fit
- Fit quality & α_s increase with λ_V
 - \rightarrow closer to data at $s < \hat{s}_0$
- $\Delta \hat{s}_0 \rightarrow 3$ times larger errors

Not competitive & unreliable

μ Anomalous Magnetic Moment

Electron Anomalous Magnetic Moment

Morel et al, Nature 588 (2020) 61

New measurement of α

 $\alpha^{-1}(\text{Rb}) = 137.035\,999\,206\,(11)$

 8.1×10^{-11} accuracy

5.8 σ discrepancy with Cs experiment

$$\begin{split} \Delta a_e &\equiv a_e^{\exp} - a_e^{\rm SM} \\ &= \begin{cases} (-8.8 \pm 3.6) \cdot 10^{-13} & (\text{Cs}, -2.4\sigma) \\ (+4.8 \pm 3.0) \cdot 10^{-13} & (\text{Rb}, +1.6\sigma) \end{cases} \end{split}$$

τ Anomalous Magnetic Moment

Difficult to measure!

$$a_{\tau}^{\exp} = (-0.018 \pm 0.017)$$
 Delphi

 $-0.007 < a_{\tau}^{\text{New Phys}} < 0.005$

González-Springer, Santamaria, Vidal '00 (LEP/SLD data)

Eidelman, Passera

$$10^{8} \cdot a_{\tau}^{\text{th}} = 117\ 324 \pm 2 \qquad \text{QED} \\ + 47.4 \pm 0.5 \qquad \text{EW} \\ + 337.5 \pm 3.7 \qquad \text{hvp} \\ + 7.6 \pm 0.2 \qquad \text{hvp NLO} \\ + 5 \pm 3 \qquad \text{light-by-light} \\ = 117\ 721\ \pm\ 5$$

Enhanced sensitivity to new physics: $(m_{\tau}/m_{\mu})^2 = 283$

	Electron	Muon	Tau
a ^{EW} /a ^{HAD}	1/56	1/45	1/7
a ^{ew} /δa ^{had}	1.6	3	10

Essentially unknown

May be accessible at BFs through radiative leptonic decays (Fael et al) Or with a polarized e⁻ beam (Crivellin et al)

Flavour-Violating Higgs Couplings

τ Data Samples

ALEPH:	3.3 \cdot 10 ⁵ reconstructed τ decays
BaBar / Belle:	$1.4 \cdot 10^9$ $\tau^+ \tau^-$ pairs
Belle-II:	4.6 \cdot 10 ¹⁰ $\tau^+\tau^-$ pairs
sτcF:	2.1 · 10 ¹⁰ $\tau^+\tau^-$ pairs (10 ⁸ near threshold)

Luminosity is important. Systematics also!

Chiral Sum Rules

 $\Pi(\mathbf{s}) \equiv \Pi_{\mathbf{VV}}(\mathbf{s}) - \Pi_{\mathbf{AA}}(\mathbf{s}) \quad \text{Pure non-perturbative quantity}$ $\lim_{s \to \infty} s^2 \Pi(s) = 0 \quad \rightarrow \quad \Pi^{\text{OPE}}(s) = -\frac{O_6}{s^3} + \frac{O_8}{s^4} - \cdots$

⁵ χPT (s \rightarrow 0): $\Pi(s) = \frac{2F^2}{s} - 8L_{10}^r(\mu^2) + \frac{1}{16\pi^2} \left(\frac{5}{3} - \ln\frac{-s}{\mu^2}\right) + 16C_{87}^r(\mu^2)\frac{s}{F^2} + \cdots$

$$\int_{s_{\rm th}}^{s_0} ds \,\,\omega(s) \,\frac{1}{\pi} \,\mathrm{Im}\,\Pi(s) + \frac{1}{2\pi i} \oint_{|s|=s_0} ds \,\,\omega(s)\,\Pi(s) = 2 f_\pi^2 \,\omega(m_\pi^2) + \mathrm{Res}[\omega(s)\Pi(s), s=0]$$

Statistical analysis:

$$\begin{split} C_{87}^{\text{eff}} &= (8.40 \pm 0.18) \cdot 10^{-3} \,\text{GeV}^{-2} \\ L_{10}^{\text{eff}} &= (-6.48 \pm 0.05) \cdot 10^{-3} \;. \end{split}$$

González-Pich-Rodríguez, 1602.06112

$$O_6 = (-3.6 \pm 0.7) \cdot 10^{-3} \,\text{GeV}^6$$

 $O_8 = (-1.0 \pm 0.4) \cdot 10^{-2} \,\text{GeV}^8$

• χ **PT** Parameters:

• $\varepsilon'_{K}/\varepsilon_{K}$: $\mathcal{O}_{6} \rightarrow \langle (\pi\pi)_{I=2} | Q_{8} | K^{0} \rangle \rightarrow \text{e.m. penguin contribution}$

 $\left(\varepsilon'_{K}/\varepsilon_{K}\right)_{\rm EWP}^{I=2} = \left(-4.5 \pm 1.8\right) \cdot 10^{-4}$

Pich-Rodríguez, 2102.09308

EFT analysis of $\tau \rightarrow v_{\tau} K \pi$

Rendón-Roig-Toledo, 1902.08143

$$\mathcal{L}_{cc} = -\frac{G_F V_{us}}{\sqrt{2}} (1 + \epsilon_L + \epsilon_R) \Big[\bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} [\gamma^\mu - (1 - 2\hat{\epsilon}_R) \gamma^\mu \gamma_5] s + \bar{\tau} (1 - \gamma_5) \nu_\ell \cdot \bar{u} [\hat{\epsilon}_s - \hat{\epsilon}_p \gamma_5] s + 2\hat{\epsilon}_T \bar{\tau} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} s \Big] + \text{h.c.}$$

Best fit values	$\hat{\epsilon}_S$	$\hat{\epsilon}_T$	χ^2	χ^2 in the SM
Excluding $i = 5, 6, 7$ bins	$(1.3 \pm 0.9) \times 10^{-2}$	$(0.7 \pm 1.0) \times 10^{-2}$	[72, 73]	[74, 77]
Including $i = 5, 6, 7$ bins	$(0.9 \pm 1.0) \times 10^{-2}$	$(1.7 \pm 1.7) \times 10^{-2}$	[83, 86]	[91, 95]

Complementary to kaon and hyperon data analyses

@ LHC

Excellent signature to probe New Physics

Difficult to identify light objects (Z, W^{\pm}) with only Jets QCD Jets orders of magnitude larger Must rely on leptons

LHC produces high-momenta τ 's Tightly collimated decay products (mini-jet like) Momentum reconstruction possible

- **Low multiplicity.** Good tagging efficiency
- Heaviest lepton coupling to the Higgs (4th H Br)

Polarization information

ATLAS

 $\sqrt{s} = 7 \text{ TeV}$

 $L dt = 24 \text{ pb}^{-1}$

- Fit