Time-Dependent Analysis Dissection

Takeo Higuchi

Kavli IPMU, the University of Tokyo

Physics Week 2021

Particle List in the SM Framework

Kobayashi Maskawa Theory

- In 1973, when only 3 kinds of quarks (*u*, *d*, *s*) were known, M. Kobayashi and T. Maskawa proposed a new theory that gives an answer to the *CP* violation puzzle discovered by J. W. Cronin *et al*. in 1964.
- They needed a "complex" couplingstrength constant between two quarks to answer the puzzle. They realized that the complex constant is obtained by increasing the number of quark variations from 3 to 6.
- A matrix of coupling strengths between 3 up-type quarks and 3 down-type quarks is called Cabibbo-Kobayashi-Maskawa matrix. According to the KM theory, the elements V_{ub} and V_{td} are complex.

- By 1995, all the predicted kinds of quarks were discovered.
- Question: is V_{td} really complex as M. Kobayashi and T. Maskawa predicted?

CKM Matrix

• The CKM matrix is a unitary matrix: $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

From the unitarity condition, 6 equations are derived.

- From physics discussion, the Wolfenstein parameterization is obtained:

$$V_{\text{CKM}} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- You need to remember that V_{td} and V_{ub} are complex.
- You need to remember $\lambda \approx 0.2$ plus the order of λ for each element.
- You need to remember $A \approx 0.8$.

CKM Triangle

- Each of the equation forms a triangle on the complex plane.
- The bottom right triangle, which is associated to the equation $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ is moderately large.

• By assuming $V_{ud}V_{ub}^*$, $V_{cd}V_{cb}^*$, and $V_{td}V_{tb}^*$ are vectors, we can draw a triangle associated to the equation on the complex plane, which is called "CKM triangle".

Interior angle definition $\phi_{1} \equiv \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}}\right) = \pi - \arg(V_{td})$ $\phi_{2} \equiv \arg\left(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right)$ $\phi_{3} \equiv \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$ If the KM theory is correct, $\phi_{1} \neq 0, \pi$.

Belle K Experiment

Belle KExperiment

By demonstrating $\sin 2\phi_1 \neq 0$, Belle verified the KM theory in 2001. They used the "**time-dependent analysis**" method to obtain $\sin 2\phi_1$. The same method will be used in NP search in Belle II. Dissect the time-dependent analysis method.

Where is V_{td}?

Neutral-meson mixing

A neutral meson produced by any means "mixes" with its *CP* partner until it decays. A particle initially produced in the |X⁰⟩ state stochastically stays in the |X⁰⟩ state or moves to the |X
⁰⟩ state. No relevance with the pair creation.

V_{td} in the B^0 - \overline{B}^0 mixing

• The amplitude associated to the $B^0 - \overline{B}^0$ mixing includes V_{td}^2 . The $B^0 - \overline{B}^0$ mixing would be a good probe to measure sin $2\phi_1$, where $\phi_1 \equiv \pi - \arg(V_{td})$.

Digression: B^0 Discovery (1980)

https://www.classe.cornell.edu/

Digression: $B^0 - \overline{B}^0$ Mixing (1986, 1987)

• $B^0 - \overline{B}^0$ mixing: $\chi = \frac{N(B^0 \to \overline{B}^0)}{N(B^0 \to B^0) + N(B^0 \to \overline{B}^0)}$. The $\chi = 0$ if no mixing.

 $N(B^0 \to B^0)$... unmixed $N(B^0 \to \overline{B}^0)$... mixed

Evidence for the B^0 - \overline{B}^0 mixing

• A $\overline{B}{}^{0}$ pairly-produced with a B^{0} from the $e^{+}-e^{-}$ collision by the DORIS II accelerator had changed to a B^{0} .

ARGUS Collaboration, Phys. Lett. B192, 245 (1987).

$$\chi = \frac{N(B^0 \to \overline{B}{}^0)}{N(B^0 \to B^0) + N(B^0 \to \overline{B}{}^0)} = 0.17 \pm 0.05$$
$$\chi \equiv \chi^2/2(1+\chi^2), \chi \equiv \Delta m_{P^0}/\Gamma_{P^0}.$$

 $\chi_{B^0}^{\text{PDG2020}} = 0.1858 \pm 0.0011$

https://argus-fest.desy.de/e301/e305/wsp_arg_new.pdf

Mixing-Induced CP Violation

• *CP* eigenstate f_{CP} :

a state to which both B^0 and \overline{B}^0 can decay. $J/\psi K_S^0, \phi K_S^0, J/\psi \pi^0, \pi^+\pi^-, ...$

• Flavor specific final state:

a state to which only either of B^0 and \overline{B}^0 can decay. $B^0 \to D^{*-} \ell^+ \nu_{\ell} \Leftrightarrow \overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_{\ell}, \dots$

• There are two possible paths from B^0 to $f_{CP}: B^0 \to f_{CP}$ and $B^0 \to \overline{B}^0 \to f_{CP}$. They may have different weak phases as below.

Mixing-Induced CP Violation

We can extract ϕ_1 by analyzing the $B \to J/\psi K^0$ and other $(c\overline{c})K^0$ modes.

Event Reconstruction

We detect the $B \rightarrow J/\psi K_S^0$ decay by trying to reconstruct the *B*-meson ٠ candidate mass from particles recorded by the detector.

Luckily, the TD analysis is less affected to by the event reconstruction procedure.

13

Event Reconstruction

• Typical distributions of ΔE and m_{BC} of the reconstructed B candidates are ...

- The overall shape is be determined by a 2D, 3D, or ... ML fit method (but sometimes ΔE only (1D)).
- The event-by-event signal probability calculated from the determined signal and background shapes is used later when determining the ϕ_1 .

$B^0 - \overline{B}^0$ Coherence

- Just *forget* about the $B^0 \overline{B}^0$ mixing.
- When B^0 and \overline{B}^0 are pair-produced from the $\Upsilon(4S) \to B^0 \overline{B}^0$ decay, the two *B*-mesons take neither (B^0, B^0) nor $(\overline{B}^0, \overline{B}^0)$ state but only the (B^0, \overline{B}^0) state.

 $\Upsilon(4S)$ is a S = 1 boson, and B^0 , \overline{B}^0 are S = 0 boson. Because of the angular momentum conservation, the orbital angular momentum L between the two B mesons is L = 1.

If both of the two *B* mesons take the same particle state B^0 , the wavefunction of the system is exchange-

symmetric of the two *B* mesons because of the Bose-Einstein statistics. However, the wavefunction must be exchange-antisymmetric of two same particles with L = 1. These two statements are inconsistent. The same inconsistency is true for the \overline{B}^0 - \overline{B}^0 system.

Thence, only the (B^0, \overline{B}^0) state is allowed.

$B^0 - \overline{B}^0$ Mixing And $B^0 - \overline{B}^0$ Coherence

- The flavor of the two *B* mesons can be known only $\dots B^0 \overline{B}^0$ mixing stochastically until they decay to some other particles.
- One of the two *B* mesons B_1 decays to a flavor specific state. The B_1 flavor can be known from the decay products.
- The flavor of the other *B* meson B_2 at the time of the B_1 ... $B^0 \overline{B}^0$ coherence decay $t=t_1$ is opposite to the B_1 flavor.
- The B_2 flavor can be known only statistically after t_1 until it decays to some other particles. $B^0 \overline{B}^0$ mixing

Prescription

- Reconstruct $B_{CP} \rightarrow J/\psi K_S^0$.
- Remove all daughter particles of B_{CP} from the event. Assume the rest of the event come from the other *B* meson, B_{tag} .
- Examine the assumed B_{tag} daughter particles and B_{tag} decay determine B_{tag} flavor, B^0 or \overline{B}^0 , from the daughter-particle properties.
- The opposite flavor to the B_{tag} flavor is the B_{CP} flavor (this step can be skipped).

B_{CP} decay

Example

- The $B_{\text{tag}} \to D\ell\nu$ decay (a flavor specific decay) tends to produce a high momentum ℓ . The lepton charge corresponds to the B_{tag} flavor by one-to-one: $B^0 \to D^{*-}\ell^+\nu_\ell$ and $\bar{B}^0 \to D^{*+}\ell^-\bar{\nu}_\ell$.
- The B_{tag} flavor of an event with a high momentum $\ell^+(\ell^-)$ in ROE is estimated to be $B^0(\bar{B}^0)$.

Event

Implementations

• The Belle II flavor tagger employs boosted decision tree technology relying on the MC perfectness. The flavor tagger must be calibrated with the real data.

Output of the flavor tagger

q: q = +1 for B^0 tag q = -1 for \overline{B}^0 tag

 $r: 0 \le r \le 1$

r = 0 for no flavor information

r = 1 for unambiguous flavor information Wrong tagging probability w = (1 - r)/2

Calibration

Averaged *r*, output from the tagger, in the bin

Effective efficiency $\uparrow\uparrow$ when efficiency \uparrow and wrong tagging probability \downarrow

B-Meson Decay Time

• It is known that, for the $B_{CP} \rightarrow J/\psi K_S^0$ case, $\Delta t \equiv t_{CP} - t_{tag}$ distributes in

$$P(\Delta t) = \frac{1}{2} \exp\left[-\frac{|\Delta t|}{\tau_{B^0}}\right] (1 \pm \sin 2\phi_1 \sin \Delta m_d \Delta t)$$

the sign is the same as the lepton charge form the B_{tag} decay.

Digression: B Lifetime (1983)

• The *B* mesons are unstable particle \rightarrow they decay with a finite lifetime.

Decay Time Measurement

• $\langle \Delta t \rangle = \tau_B \approx 1.5$ ps. Measurement of a time of $\mathcal{O}(1 \text{ ps})$ is not easy.

Remember the average of an exponential distribution is its decay constant.

• The issue is solved by producing two mesons with a fixed momentum.

- At Belle II, *B*-mesons pairs are produced from a $\Upsilon(4S)$ decay created by a collision of 7.0 GeV e^- to 4.0 GeV e^+ provided by SuperKEKB.
- Luckily because $m_{\Upsilon(4S)} \approx m_B + m_{\bar{B}}$, the speed of the produced *B* meson is approximately the same as $\Upsilon(4S)$ that means $(\beta \gamma)_B \approx (\beta \gamma)_{\Upsilon(4S)}$.
- $\beta_{\Upsilon(4S)} = p_{\Upsilon(4S)} / E_{\Upsilon(4S)} \approx 3/11 = 0.27 \rightarrow (\beta \gamma)_{\Upsilon(4S)} = 0.28.$
- The typical distance of the two *B*-decay positions: $\langle \Delta z \rangle \approx (\beta \gamma)_B c \langle t \rangle \approx 130 \mu m$. Measurement of a length of $\mathcal{O}(100 \ \mu m)$ is feasible.

Decay Time Measurement

 $\Delta t \equiv t_{CP} - t_{\text{tag}} \approx \left(\frac{z_{CP} - z_{\text{tag}}}{\beta \gamma} \right) / (\beta \gamma)_B c$

Belle II Vertex Detectors

Determination of the *B***-Decay Position**

 Charged particle trajectory in a magnetic field = helix

helix parameter $\equiv (d_0, \phi_0, \omega, z_0, \tan \lambda)$

Belle II (BELLE2-NOTE-TE-2018-003)

 $(x^{P}, y^{P}, z^{P}, p_{x}^{P}, p_{y}^{P}, p_{z}^{P})$ at POCA = Point of Closest Approach

• The decay position (called vertex) is determined wit the χ^2 -minimizing method.

The vertex that gives the minimum χ^2 is taken as the fitted vertex (KFit). When the "IP constraint" is applied to KFit, $\chi^2 + \chi^2_{IP}$ is minimized where χ^2_{IP} accounts for the IP spread.

Typical vertex resolution: $\delta z \approx 50 \ \mu m$

Determination of sin2 ϕ_1

- The unbinned maximum-likelihood (ML) fit method us used.
- Suppose N events are recorded as signal candidates and (Δt, q) is measured for each. The probability to obtain *the set* of the N events is

$$\mathcal{L}(\sin 2\phi_1) = \mathcal{P}(\Delta t_1, q_1; \sin 2\phi_1) \times \mathcal{P}(\Delta t_2, q_2; \sin 2\phi_1) \times \dots \times \mathcal{P}(\Delta t_N, q_N; \sin 2\phi_1)$$
$$= \prod_i^N \mathcal{P}(\Delta t_i, q_i; \sin 2\phi_1)$$
Extended ML fit is out of the scope of the lecture.

• Because $\mathcal{L}(\sin 2\phi_1)$ tends to be very small for computers, the log likelihood is commonly used.

$$\ln \mathcal{L}(\sin 2\phi_1) = \sum_{i}^{N} \ln \mathcal{P}(\Delta t_i, q_i; \sin 2\phi_1)$$

• Take the sin $2\phi_1$ value that maximizes $\mathcal{L}(\sin 2\phi_1)$ as the the estimated sin $2\phi_1$ value.

Determination of sin2 ϕ_1

Empirical distributions that model the background Δt distribution well

- Typically determined from MC samples or
- Sideband events (ΔE , m_{BC} , ...)

Determination of sin2 ϕ_1

Pull distribution test

 Generate a number of "experiments" and perform the sin 2φ₁ fit for each experiment.

- Check the $p \equiv (s_{fit} s_{gen})/\sigma_s$ distribution.
- If the analysis is healthy, it distributes in the standard normal Gaussian.

Null asymmetry test

- Perform the sin $2\phi_1$ fit to flavor specific *B*-decay samples (real data).
- If the analysis is healthy, the fitted $\sin 2\phi_1$ value must be consistent with zero.

Systematic error estimation

- The major sources to the $\sin 2\phi_1$ systematic error are:
 - Vertex reconstruction procedure
 - $R(\Delta t)$ modelling and parameters
 - Wrong tagging probability
 - Tag side interference

Time Propagation of the $sin 2\phi_1$ Value

Measurement of $\sin 2\phi_1$ at Belle II

Prompt measurements of timedependent *CP*-violation and mixing (BELLE2-NOTE-PL-2020-011)

(Preliminary)

$\sin 2\phi_1 = 0.55 \pm 0.21 \pm 0.04$

Consistent with the HFLAV value $(\sin 2\phi_1)_{WA} = +0.699 \pm 0.017$

Yesterday's díscovery ís today's
calíbrationR. Feynman... and tomorrow's background!
V. Telegdi

The full analysis is ongoing.

NP Search in the Mixing-Induced CP Violation

CPV in the $b \rightarrow c\overline{c}q$ Family

CPV in the $b \rightarrow sq\overline{q}$ Family

E. Kou, P. Urquijo *et al.*, Prog. Theor. Exp. Phys. 2019, 123C01 (2019).

• New heavy particles $(\tilde{t}, H^{\pm}, ...)$, which are expected to be heavier than $m_{NP} \gtrsim \mathcal{O}(1) \text{ TeV}/c^2$ can appear in the $b \rightarrow s$ loop thanks to the quantum effect.

- $S_{sq\bar{q}} = \sin 2\phi_1^{sq\bar{q}} \approx S_{c\bar{c}s} = \sin 2\phi_1$ in the SM because the diagram includes neither V_{td} nor V_{ub} . Observation of $\Delta S \equiv S_{sq\bar{q}} S_{c\bar{c}s} \neq 0 \rightarrow$ discovery of the NP.
- **Golden mode of NP search** = $B^0 \rightarrow \eta' K_S^0$ for its theoretically accurate prediction of $\Delta S: \Delta S^{\text{theo}} \approx [0.00, 0.03]$. arXiv:hep-ph/0505075

Belle, JHEP 1410, 165 (2014).

Belle: $S_{\eta'K^0} = 0.68 \pm 0.07 \pm 0.03$

• The Belle II analysis is ongoing. We expect $\sigma(\Delta S^{exp}) \approx 0.02$ when the full Belle II dataset is used. This corresponds to a sensitivity of $m_{\rm NP} \approx O(100) \,{\rm TeV}/c^2$ particles.

Preliminary; BELLE2-CONF-PH-2021-005.

$$\mathcal{B}(B^0 \to \eta' K^0) = [59.9^{+5.8}_{-5.5} \pm 2.7] \times 10^{-6}$$

CPV in the $b \rightarrow sq\overline{q}$ Family

• More $b \rightarrow sq\overline{q}$ modes. They are waiting for you.

	$\sin(2\beta^{ef}$	^ĭ f) ≡	≡ si	n(2	2 ¢	eff	HFL Moriono PRELIM	AV d 2021	1 Y
b→ccs	World Average	:		:	:	:	0.70	± 0.0	2
φK ⁰	Average				-	★ I	0.7	4 +0.1	11 13
η′ K⁰	Average				₩		0.63	± 0.0	6
K _s K _s K _s	Average				ŀ	*	0.83	± 0.1	7
$\pi^0 K^0$	Average			-	*	4	0.57	± 0.1	7
ρ⁰ K _S	Average			<u> </u>	*		0.5	4 +0.1	18 21
ωK _s	Average			ł			0.71	± 0.2	1
f _o K _S	Average				-	-1	0.6	9 +0.1 - 0.1	10 12
$f_2 K_S$	Average	F		*			0.48	± 0.5	3
f _x K _s	Average ⊢		*			4	0.20	± 0.5	3
$\pi^0 \pi^0 K_S$	Average			-	-		0.66	± 0.2	8
$\phi \pi^0 K_S$	Average			⊢			0.9	7 +0.0)3 52
π ⁺ π K _S I	V R verage ⊢		-	-	7		0.01	± 0.3	3
K⁺ K⁻ K⁰	Average	:				4	0.6	8 +0.0	29 10
-1.6 -1.4 -	1.2 -1 -0.8 -0.6 -0.4	-0.2	0.2	0.4	0.6	0.8	1 1.2	1.4 1	1.6

 $(\sin 2\phi_1)_{c\bar{c}s} = 0.699 \pm 0.017$

CPV in the $b \rightarrow sq\overline{q}$ Family

- $K^{*0}\gamma$ is not a complete *CP* eigenstate because the photons from $B^0(\overline{B}{}^0) \to K^{*0}\gamma$ are predominantly RH'ed (LH'ed).
- The *CP*-violating parameter $S_{K^{*0}\gamma}$ is suppressed by $S_{K^{*0}\gamma} \approx -(2m_s/m_b) \times \sin 2\phi_1 = -(2.3 \pm 1.6)\%$.

P. Ball, G. W. Jones, and R. Zwicky Phys.Rev.D75, 054004 (2007).

• The $S_{K^{*0}\gamma}$ value may deviate from the SM prediction if the new particle couples with a RH'ed fermion.

Belle, Phys. Rev. D 74, 111104(R) (2006).

Belle: $S_{K^{*0}\gamma} = -0.10 \pm 0.31 \pm 0.07$ $\mathcal{A}_{K^{*0}\gamma} = -0.20 \pm 0.20 \pm 0.06$

• The Belle II analysis is ongoing. We expect $\sigma(S_{K^{*0}\gamma}) \approx 0.031$ and $\sigma(\mathcal{A}_{K^{*0}\gamma})$ when the full Belle II dataset is used.

E. Kou, P. Urquijo et al., Prog. Theor. Exp. Phys. 2019, 123C01 (2019).

Measurement of ϕ_2

- ϕ_2 is measured with the $b \rightarrow u \bar{u} d$ transition.
- In the ϕ_2 case, the penguin (right) contribution is • not negligible compared to the tree (left); we determine ϕ_2 by combining 6 $b \rightarrow u \overline{u} d B$ decays.

 $A^{+-} \equiv \operatorname{Amp}(B \to \pi^+\pi^-); \tilde{A}^{+-} \equiv \operatorname{Amp}(\bar{B} \to \pi^+\pi^-);$ $A^{+0} \equiv \operatorname{Amp}(B \to \pi^+ \pi^0); \tilde{A}^{-0} \equiv \operatorname{Amp}(\bar{B} \to \pi^- \pi^0);$ $A^{00} \equiv \operatorname{Amp}(B \to \pi^0 \pi^0); \ \tilde{A}^{00} \equiv \operatorname{Amp}(\bar{B} \to \pi^0 \pi^0).$ $S_{\pi\pi} = \sqrt{1 - A_{\pi\pi}^2} \sin(2\phi_2 + 2\theta)$ $S_{\pi\pi}$ and $A_{\pi\pi}$ are obtained

with the TD method.

Belle, Phys. Rev. D 88, 092003 (2013).

Belle: $S_{\pi^+\pi^-} = -0.64 \pm 0.08 \pm 0.03$ etc $\mathcal{A}_{\pi^+\pi^-} = +0.33 \pm 0.06 \pm 0.03$ etc

The Belle II analysis is ongoing. We expect ٠ $\sigma(\phi_2) \approx 0.6^\circ$ when the full Belle II dataset is used.

E. Kou, P. Urquijo et al., Prog. Theor. Exp. Phys. 2019, 123C01 (2019).

CKM Triangle – Current Status

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0005$ $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.025 \pm 0.020$ $|V_{ud}|^2 + |V_{cd}|^2 + |V_{tb}|^2 = 0.9970 \pm 0.0018$ $|V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 = 1.026 \pm 0.022$

The unitarity of the CKM matrix holds surprisingly well (except the first relation).

Summary

- The time-dependent analysis has been introduced.
- Key ingredients of the time-dependent analysis: event reconstruction, flavor tagging, vertex fitting, and maximum likelihood fitting.
- **Time-dependent analysis an essential method**: in Belle, when we verified the KM theory, in Belle II, when we search for new physics.

An extra lecture (mainly on mathematics) is planned tomorrow morning (CET).