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Particle List in the SM Framework
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Kobayashi Maskawa Theory

* In 1973, when only 3 kinds of quarks (u, d, s) were known, M. Kobayashi and
T. Maskawa proposed a new theory that gives an answer to the CP violation
puzzle discovered by J. W. Cronin et al. in 1964.

» =2.3 MeV/c? =1.275 GeV/c? =173.07 GeV/c?

* They needed a “complex” coupling-

> 213 2/3 2/3
strength constant between two quarksto | ., U, 112 C 112 t

7

answer the puzzle. They realized that K >
the complex constant is obtained by : »,'c - P
increasing the number of quark =4.8 MeY. =95MeY Wisdtsce
variations from 3 to 6. 1 wl RS |

1/2 1/2 1/2

* A matrix of coupling strengths between down strange bottom

3 up-type quarks and 3 down-type
quarks is called Cabibbo-Kobayashi- Via Vus Vup
Maskawa matrix. According to the KM (Vc g Vo Vg ) = Vexn
theory, the elements V,;;, and V;,4 are Vg Vie Vi

complex.

* By 1995, all the predicted kinds of quarks were discovered.

* Question: is V4 really complex as M. Kobayashi and T. Maskawa predicted?



CKM Matrix

Vud Vus Vub Vud Vus Vub
e The CKM matrix is a unitary matrix: {Vea Ves Voo | |Vea Ves Ve | =10
Via Vis Vi Via Vis Vi
From the unitarity condition, 6 equations are derived.
(a) Vudvu*s + Vchc§ + thVtﬂ; =0 (d) Vcht*d + Vcsvtz + VcthE =0
(0) VuaVia + ViusVes + Vi Vep = () VuaVig + VusVis + Vi Vip = 0
() VausVup + VesVep + VesVip = 0 (£) VuaVup + VeaVep + VeaVip = 0

* From physics discussion, the Wolfenstein parameterization is obtained:

Vud Vus Vub 1- /12/2 A A/lg (P T in)
VCKM = <Vcd Vcs Vc ) — —A 1- AZ/Z AN
Via Vs Vi AL —p—in) —AA? 1

- You need to remember that V;; and V,;;, are complex.
- You need to remember A = 0.2 plus the order of A for each element.
- You need to remember A = 0.8.



CKM Triangle

* Each of the equation forms a triangle on the

complex plane.
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s 0(22) ¥ 0(22)
* The bottom right triangle, which is associated © ®

. 0(/13) 0(/13)
to the equation VoV, + VogViy + VgV, =0 4, /\ /\
is moderately large. ) 0%

Vs Vs O(A3) VaVi  0(23)

* Byassuming V, 4V, V.qV/y,, and V;4V;}, are vectors, we can draw a triangle
associated to the equation on the complex plane, which is called “CKM triangle”.

Veb'Ved

Interior angle definition

V..,V
N7 I—

tdVtp

VeaVip

I

? Vudvub

¢ = ar _VudV:Lb

3 g VCdVC*

If the KM theory is correct, ¢p; + 0, .




Belle M Experiment

KEKB accelerator
B e R
ﬂ;:ﬁ s 8‘6‘(?“}-'_‘7‘ s
“-! A=A s : . /’..

* The Belle experiment verified the KM
theory in 2001 by measuring the CP
violation in the B meson system.




Belle)(Experiment

Belle Collab., Phys. Rev. Lett. 86, 2509 (2001).

_______________________________________________________

~2001/02/09 (~10%x10° BB pairs) | ¢ | s
~ sin2¢; = +0.58283F F000 Ry —

First report

Belle Collab., Phys. Rev. Lett. 87, 091802 (2001).

[y

2001/07/18 (~29%10° BB pairs)
sin2¢; = +0.99 + 0.14 + 0.06

Confirmation of ¢p; = 0

sin2¢4 - sin(AmyAt)

1
—_
LI LB

By demonstrating sin 2¢; # 0, Belle verified the KM theory in 2001. They used
the “time-dependent analysis” method to obtain sin 2¢p;. The same method will
be used in NP search in Belle II. Dissect the time-dependent analysis method.



Whereis V;;?

Neutral-meson mixing

* A neutral meson produced by any means “mixes” with its CP partner until it
decays. A particle initially produced in the |X 0) state stochastically stays in the
|X9) state or moves to the |X°) state. No relevance with the pair creation.

u,c,t
d — — — b
BO W % BY
b - - —d
u,c,t
2 2
Vida Vida

V,q in the B°-B° mixing

* The amplitude associated to the B°-B° mixing includes V4. The B°-B° mixing
would be a good probe to measure sin 2¢;, where ¢, = m — arg(V;4).



Digression: B Discovery (1980)

https://www.classe.cornell.edu/

T eite "‘—>]Y(4S )
.. 4th bl_9 resonance

(u)

D. Andrews et al., Phys.
Rev. Lett. 45 219 (1980).

Cross-section (nb)
N

o L —r !
10.45 10.50 10.55 10.60
Cornell Electron Storage Ring (left) Center of mass energy,W (GeV)

and CLEO-II detector (right)

400 : ™ Y
B . B~ — DOTL'_ 4
Y(4S) -» B°B° (50%) ‘

- B*B~ (50%) 4|
m123 = E‘Seam - (ﬁD + ﬁﬂ)z AIP Conf. Proc.
424,75 (1998).

52 52 525 5271 53 52 52 525 521 53
Beam-energy constraint mass, mg [GeV/c?]



Digression: B’-B° Mixing (1986, 1987)

N(B® - B?%)
N(B® - B%) + N(BY - B9)
N(B° - B?) ...unmixed N(B? — BY) ... mixed

e BY- B mixing: y = The y = 0 if no mixing.

Evidence for the B°- B? mixing

A B pairly-produced with a B® from the
e*-e~ collision by the DORIS II accelerator
had changed to a B.

- o

i
i NOWK A YTH e e T T T
i _ :
B N(B° - B°) :
W = 5 5 5 =08 — 0.17 +£ 0.05 |
Ry« s g N(BY - BY) + N(BY - BY) !
NG :
g iy 1
B°~D'_p+v®t:¥:§;:_~--:.--.. e x = x%/2(1 + x?%), x = Ampgo /To. !
feglipe ~ ome e e

Lo kta=n PDG2020
https://argus-fest.des;de/e301/e305/wsp_arg_new.pdf Xpo =0.1858 £ 0.0011
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Mixing-Induced CP Violation

* (P eigenstate f.p:

a state to which both B® and B° can decay.
J/WKS, OKS, ]/, ntn, ...

* There are two possible paths from B° to fop: B® - fcp and B® - B? - fp.
They may have different weak phases as below.

BO
d— e b

arg BO uct u,ct RBO
b i d

Phase difference from
the mixing +2¢,

Phase difference from decay

CP eigenstate
fep

BO

Phase difference from decay
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Mixing-Induced CP Violation

Phase difference from decay

BO
. CP eigenstate
i —— - —— - fcp
aI‘g BO u,c,tT lu,c,t B9 B i
by Phase difference from decay ______________________
Phase difference from
the mixing +2¢,
| )J/w <i )J/ v
0 b cs 0 . V:; S -0 .
o(: e e
arg(B® — J /Y KJ') = arg(VVes) = 0 arg(B® = J/Y K') = arg(VepVes) = 0

Remember only arg(V;,;) and arg(V,,;) are non zero.

We can extract ¢p; by analyzing the B — J/9 K° and other (cc)K° modes.




13

Event Reconstruction

« We detect the B = J /3 KJ decay by trying to reconstruct the B-meson
candidate mass from particles recorded by the detector.

Belle Collaboration, Phys. Rev.

Event reconstruction Lett. 108, 171802 (2012).
xampl 3k
(example) ) »@ L 4 Allcombined | (a)
SN 2T N [ — B> JiyKg
AL/ RS © [ — BSy@S)K,
N L ~ > 0
- g T o 2k B —%.1Ks L
y O\ R4 = - —— Fit result
l\ B /,K\ Ny [
S~o- \\ PELEN - ﬂ - L
I/ \\ - c
0O v~ 1k [~
‘{\ KS l,< \ ) @ g |
\\\—’// -~ uJ I
Remember that Belle II detects - ﬂ!‘ 5
only *, K*, e*, u*, p(p),andy. 52 522 524 526 528 5.3
M, (GeV/c?)

ptu-,mtm~

(BB = Y )

[

Luckily, the TD analysis is less affected to
by the event reconstruction procedure.
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Event Reconstruction

* Typical distributions of AE and mp. of the reconstructed B candidates are ...

d CMS — -
AE = Ecan Ebeam Mpc = \/El%eam (pcand)

peaks at 0 peaks at mll;]o)G

~
________ N
------ -
~
-

Typical AE dist. model Typical mpg, dist. model
- Signal: Gaussian(s) - Signal: Gaussian(s)
- BG: 1%t order poly - BG: ARGUS function
ARGUS(x) = EEMS xy/1 — xZ exp[d(1 — x)?]
* The overall shape is be determined by X = Mpc/Epoam

a 2D, 3D, or ... ML fit method (but sometimes AE only (1D)).

* The event-by-event signal probability calculated from the determined signal
and background shapes is used later when determining the ¢;.
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Flavor Tagging

__________________________________________________________________________________________________________

Phase difference from decay

. CP eigenstate

Phase difference from - fep
the mixing +2 B°
Phase difference from decay ______________________
B or not B
Phase difference from decay

. CP eigenstate

Phase difference from fcp

the mixing +2¢, B°

_______________________

b o o o e e e e = = = e e e e e e e e e e e e e e e e e e e e e e e e e - - —



B°-B? Coherence

e Just forget about the B°-B° mixing.

e When B and B° are pair-produced from the Y(4S) —» B°BY decay, the two B-
mesons take neither (B°, B®) nor (B?, B?) state but only the (B?, B?) state.

[proof]
1=1 /_ Y(4S) isa S =1 boson, and B°, B? are
BY ) »{ B° S =0 boson. Because of the angular
momentum conservation, the orbital
S =1 boson | S=0 k;osons ' angular momentum L between the

two B mesonsis L = 1.

If both of the two B mesons take the same particle

state B?, the wavefunction of the system is exchange-

symmetric of the two B mesons because of the Bose-Einstein statistics. However,
the wavefunction must be exchange-antisymmetric of two same particles with

L = 1. These two statements are inconsistent. The same inconsistency is true for
the B%- B? system.

Thence, only the (B°, B?) state is allowed. []

16
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B°-B’ Mixing And B°-B° Coherence

D_'€+V{) D+€_l_’f
t == 0 t1 t == 0 tl
' RO — | O
B | ; Decay as B° \ B " Decay as B°
— | i — |
Y(4S) : ! i ) Y(4S) : ! 7 )
— HE | — : |
' BO : I ' g0 | !
The other Bis \ The other B is \
100% B® at t = t,. J/W K 100% B® at t = t,. J/W K
The oscillation starts The oscillation starts
like B® - B® - B9 ..., like B - B® - BY ...

The flavor of the two B mesons can be known only
stochastically until they decay to some other particles.

One of the two B mesons B; decays to a flavor specific state.
The B; flavor can be known from the decay products.

The flavor of the other B meson B, at the time of the B
decay t=t; is opposite to the B, flavor.

The B, flavor can be known only statistically after ¢; until it
decays to some other particles.

... B°-B? mixing

... B%-B? coherence

... B°-B? mixing
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Flavor Tagging Bepdecay

Prescription
« Reconstruct Bgp = J /Y KZ.

* Remove all daughter particles of B-p from \
the event. Assume the rest of the event come

from the other B meson, By,g.

* Examine the assumed By, daughter particles and Bi,g decay
determine By, flavor, B or B®, from the daughter-particle properties.

* The opposite flavor to the By, flavor is the B¢p flavor (this step can be skipped).

Example

* The B,g —» D¥v decay (a flavor specific decay) tends to produce a high
momentum ¢. The lepton charge corresponds to the By, flavor by one-to-one:
B - D* ¢*v,and B® - D*t ¢~ v,.

* The By, flavor of an event with a high momentum £7(#7) in ROE is estimated
to be B°(BY).
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Flavor Tagging

Implementations
— Characteristic B decays =—--- Parameter classification -- REEEEEEE Final likelihood --------- .
| X : . |
B0, Dt 7, 0- . Calculate B°-likelihood and B°- ii Combine all the likelihoods. i
¢ l likelihood for each category. | i
\_} DO 7T+ i i i @1%55) @LMCh:lsters) @CLCll:lsters) g-r i
\  Categories Targets for B i i ------------------------- H deond - Y J_ i
L X K~ i Electron e ¥ o :
\  Intermediate Electron et i i i
i Muon o H !
EO — Dt 7= (K7) i Intermediate Muon pwh ¥ |
. Kinetic Lepton - : i :
L K 0 Vy I i Intermediate Kinetic Lepton rr i | e i
! Kaon K~ | : g :
. Kaon-Pion K ,x" i i 8 i
— . Slow Pion mt H —— !
BO - A_ci_ X~ i Maximum p* o, i | P i
\_) A + | Fast-Slow-Correlated (FSC) " i i i
‘ a . Fast Hadron T, K H !
\_} - i Lambda A H :
P : ¥ O—D—{ P} |
1! I

* The Belle II flavor tagger employs boosted decision tree technology relying on
the MC perfectness. The flavor tagger must be calibrated with the real data.



Flavor Tagging
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Calibration
Output of the flavor tagger T seren P
- | Lat=628 10"
q: q = +1 for B tag E s o8 '[ (i;,x"}(
q = —1 for B tag ‘;,9, oer ;""
ro<r<1 z noaf K
) ) o~ i «Data
r = 0 for no flavor information = 02y -MC
r =1 for unambiguous flavor information of A
Wrong tagging probability w = (1 —r)/2 o 02 04 06 08 1
Tegor ?

2500 [

N
(@)
o
o

1000

Candidates per 0.05

500

o

Normalized
Residuals
[} I{J nN o

1500 |

Belle Il
Ldt=6281b" * Data
=MC

4 e ry & & e
-‘oého“’o"*" ""0’04'""‘0""o¢to

[)
T T T T T T T
-1 08 06 -04 02 0 02 04 06 08 1

r
q FBDT

t  grdistribution

Averaged r, output from the tagger, in the bin

Effective tagging efficiency: €.¢¢
€eff = z e;(1—2w;)* = (33.8+ 3.6 £1.6)%

bin F. Abudinén et al. (Belle II), arXiv:2008.02707.

Effective efficiency TT when efficiency T
and wrong tagging probability |
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B-Meson Decay Time

fCP

e - - - - ——

________________________________________________________________________________________

Decay @ t = t;p

» Itis known that, for the Bcp = J /i K¢ case, At = tcp — tiag distributes in

1
P(At) = 2 €XP l—— (1 + sin 2¢; sin Am At)

the sign is the same as the lepton
charge form the By, decay.




_________________________________________

Digression: B Lifetime (1983)

E. Fernandez et al. (MAC),

Phys. Rev. Lett. 51, 1022 (1983);
N. S. Lockyer et al. (Mark 1),
Phys. Rev. Lett. 51, 1316 (1983).

* The B mesons are unstable particle — they decay with a finite lifetime.

Drawing perpendicular
to the beam axis

beam axis /)

Closest approach é: the distance from
the lepton track ¢ to the beam axis,
called an “impact parameter”

()
(By siny sin 8)c

0 ... polar angle of the track not
shown in the figure

TB:

TMAC = (1.8 + 0.6 + 0.4) ps

Mark I _ (1 2+8 él-g + 0. 3) ps
Tp002°%% = 1.514 + 0.004 ps

WEIGHTS

PEP experiments @ SLAC

MAC

B
155 EVENTS

L

e
113 EVENTS

40

30

20

7-83
4595A1

Mark I1

T I [ I

|
L : (a) —

|
|
|
|
1
x
|
x
|

|
I
|
[
1
|
!
|
|

I |

1.0
(mm)

-1.0 -0.5 0 0.5
IMPACT PARAMETER
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Decay Time Measurement

(At) = 15 = 1.5 ps. Measurement of a time of O(1 ps) is not easy.

Remember the average of an exponential distribution is its decay constant.

The issue is solved by producing two mesons with a fixed momentum.
Decayatt =0

= S et 1 ecay att
—00= L) w,% =) @‘ _—

e - O
= o)
At R O ©

e'-e” collision B/B pair creation
« At Belle II, B-mesons pairs are produced from a Y(4S) decay created by a
collision of 7.0 GeV e~ to 4.0 GeV e* provided by SuperKEKB.

* Luckily because myg) = mpg + mg, the speed of the produced B meson is
approximately the same as Y(45) that means (By)g = (BY)y(s)-

* Byus) = Pyas)/Exas) = 3/11 =027 - (BY)yus) = 0.28.

» The typical distance of the two B-decay positions: (Az) = (fy)gc(t) = 130um.
Measurement of a length of (100 um) is feasible.
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Decay Time Measurement

SIS

SEzsor l ./

ﬁy Beam pipe

SEZSsO

Z,
e\ N /

N\

At =tep — tag = (zcp — Ztag)/(BY)BC
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Belle II Vertex Detectors

- '.- = v-‘
ol

4 outer layers for

. 1
: 2 linnerlayers for
pixel'detector (PXD)

45 cylindrically 10 cylindrically
arranged SVD ladders arranged PXD ladders




26

Determination of the B-Decay Position

* Charged particle trajectory in a * The decay position (called vertex)
magnetic field = helix is determined wit the y?2-
----------------------------------------------- : minimizing method.

Jj-th measured
Belle I (BELLE2-NOTE-TE-2018-003)

helix
(", y", 2% px, p;, pz)at i-th measured_ "
POCA = Point of Closest Approach *
y p = z_(5hi)tvi(5hi)
l
o,

V; ...inverted error
matrix of the helix

Fltted vertex

v
The vertex that gives the minimum y?2
taken as the fitted vertex (KFit).
When the “IP constraint” is applied to

KFit, 2 + x#% is minimized where y%

x" = dg sin gy Py = cos ¢y/aw accounts for the IP spread.
P = —d, cos P =sing,/aw
;}p = 2, 0 €05 Po 5213 _ tanq/l{%w Typical vertex resolution: §z =~ 50 um
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Determination of sin2¢-

The unbinned maximum-likelihood (ML) fit method us used.

Suppose N events are recorded as signal candidates and (At, q) is
measured for each. The probability to obtain the set of the N events is

L(sin2¢,) = P(Atq, qq;sin 2¢1) XP (At,, q; Sin 2¢p1) X -« X P (Aty, qy; Sin 2¢p1)

N
=‘ ‘ P(At;, q;;sin2¢p1)
i

Extended ML fit is out of the scope of the lecture.

* Because L(sin 2¢;) tends to be very N
small for computers, the log likelihood In L(sin2¢,) = Z In P(At;, q;; sin 2¢,)
is commonly used. i

 Take the sin 2¢p; value that maximizes L(sin 2¢,) as the the estimated
sin 2¢4 value.



28

Determination of sin2¢-

+ <

?(Ati, ql' Sin2¢1) — P(At) =%exp !_|A_t0|] (1 £ sin 2¢p; sin Am At)

Tp

]

AE

Empirical distribution accounting
for apparatus limitations

- b - c effect to By,g decay vertex

reconstruction

i - Detector resolution
: - At = Az/Byc approximation

.

Empirical distributions that model
the background At distribution well

- Typically determined from MC
samples or
- Sideband events (AE, mg, ...)

_________________________________________



Determination of sin2¢-

»
S
T

Linearity test Pull distribution test

entries/0.32)

'} ~| '« Generate a number of
ol “experiments” and

f perform the sin 2¢, fit
ot ) for each experiment.

[sin2¢,(fit)]

0
pull
0.4 - o »

* Checkthep = (Sfit — Sgen) /o, distribution.

-  If the analysis is healthy, it distributes in the
) standard normal Gaussian.

0.2 o

Systematic error estimation
Null asymmetry test

* The major sources to the sin 2¢4
* Perform the sin 2¢ fit to flavor systematic error are:
specific B-decay samples (real data).

 [f the analysis is healthy, the fitted
sin 2¢, value must be consistent
with zero.

Vertex reconstruction procedure

R(At) modelling and parameters

Wrong tagging probability

Tag side interference




Time Propagation of the sin2¢4 Value

Belle Collab., Phys. Rev. Lett. 87, 091802 (2001).

Belle 29 MBB)
sin 2, = +0.99 + 0.14 + 0.06

Belle Collab., Phys. Rev. Lett.
108, 171802 (2012).

We were very lucky.
12 Belle

1 Z: numbers

os BELLE Only
40

3 0.6 * + ¢ : @

= i

IG 1

0.4
1
1
0.2 Belle run end —>
|
0
2000 2002 2004 2006 2008 2010 2012 2014

— year

—————————————————————————————————————————————————— -0.65_ BELLE
(Sin2¢1)WA = +0.699 +£0.017 P T I TP TP TP T I

64202 4 6
¢, =(22.2+0.7)° (HFLAV2021) At [ps]

sin2¢, = +0.667 + 0.023 + 0.012
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Measurement of sin2¢, at Belle II

Asymmetry Candidates / (1 ps)

Prompt measurements of time-

60 r —
- Belle Il (Preliminary)

50 [ JL dt=34.6 fb~?

[ B - J/p(L)Ke(n*m~)
40 |
30
20 F

10 |

t Bgg dependent CP-violation and mixing
t B (BELLE2-NOTE-PL-2020-011)

(Preliminary)

sin2¢; = 0.551+0.21 +0.04

Consistent with the HFLAV value
(sin2¢;)wa = +0.699 + 0.017

o
U o

o o
o O

VYesterday’s discovery is today’s

calibration R. Feynman
ool ... and'tomorrow’s background]!
2 4 6 8 V. Telegdi

At [ps]

The full analysis is ongoing.
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BO
. CP eigenstate
i —— G er—— b - | fep
arg | ge u,c,tT lu,c,t BO BO i
by O Phase difference from decay“\

Phase difference from
the mixing +2¢,

__________________________________________________________________________________________________

;)J/w

- * s
)KOHKS ( _ “ _>K0—>KS
d d

__________________________________________________________________________________________________

Variety of sin 2¢¢"" measurement becomes available

by replacing the b — ccs with other transitions
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CPVin the b - ccq Family

b — ccs (B - J /Y K°) ... reference

z o.e |
A =3 gl +#F Ty
v, c > e >z ik
(7 s )i £ o=
B K —>KS e -o.a +
d d -0-6 | . . , , . .
-6 -4 -2 o 2 a4 S
. AT (PS)
S]/lng =sin2¢; = 0.699 + 0.017 ... reference
b — ccs (B - P(2S)K°)
¢ )5/)/(35) Phys. Rev D77, 091103(R) (2008).
v __ 120} - s ]
0 T g 08
B K — K¢ > 80; E 0:(23
d d s 60; & 02
. G oo : o6
Same diagramas B — ] /{ K° 201 ‘ € s
. A T 4§ T
= same sin 2¢ At (ps) At (ps)
S¢(25)K° =0.72 1+ 0.09 £ 0.03 ... same, no surprise
b- ccd (B - J/yPn°
Phys. Rev D98, 112008 (2018).
E F ' 3 ' 3 C  (b) ]
)J/‘l’ _ | 5 o.f +H- ‘ :
v, ¢ & 1 L]
[_7 _--1-/‘/----‘}< J % ; g 0,0 r“-+-'j. i + | ]
BO cd 7_"_() 2 1 = "TT l ]
d d 4 5~ E

(b = ccs)XVea/Ves), arg(Veq/Ves) = 0
= same sin 2¢,?

Sy /pn®

= —0.59 £ 0.19 £ 0.03 ... same, no surprise



E. Kou, P. Urquijo et al.,
Prog. Theor. Exp. Phys.

CPV in the b — Sqq Family 2019, 123€01 (2019).

t,t
: icles (£, H* i 4/\_
New heavy particles (¢, H+, ...), which are expected b QE S

to be heavier than myp = 0(1) TeV/c? can appear \ )
in the b — s loop thanks to the quantum effect. S WL HT

1
\

* Sgqg = Sin 2(]515‘167 ~ S,z = sin 2¢; in the SM because the diagram includes
neither V4 nor V5. Observation of AS = S,z — Scs # 0 — discovery of the NP.

 Golden mode of NP search = B® — n’K. for its theoretically accurate prediction
of AS: AS™€° ~ [0.00,0.03]. arXiv:hep-ph/0505075

Belle, JHEP 1410, 165 (2014).

Belle: Sano =0.68+0.07+0.03 n'KQ (n' > i) -
~ 22 Hua e B Jraceeor’
» The Belle II analysis is ongoing. We expect % 30 ?lz{fa
o(AS®*P) ~ 0.02 when the full Belle Il datasetis = 2|
1 LR ~ 20 ?-&@Peaking

used. This corresponds to a sensitivity of myp = =t

0(100) TeV/c? particles. 2 |

Preliminary; BELLE2-CONF-PH-2021-005. - Mlh l -----------------

' ! . L
5.24 5.26 5.28 5.3

B(B® > n'K°®) = [59.9728 + 2.7]|x107° " (GoVIe)




CPVin the b - sqq Family

More b = sqq modes. They are
waiting for you.

sin(23° )-—s (2¢

) ‘Moriond 2021

PRELIMINARY

¢K°

nK"

Average

b-sccs World Average | .

070+002

0.74 *81;

Ks Kg K Average

n° K°

mKS

fo Ks

f, Ks

fx Kg

Average

Average

Average

n’ n°Kg Average

¢ r:o K
ya KS NRverage
K*K K Avérage

p°Ks  Average

Average E :

Average L

Avérage —

0.63+0.06
083017
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CPVin the b - sqq Family

« K*% is not a complete CP eigenstate because the 4
photons from BY(B®) —» K*%y are predominantly
RH’ed (LH,Ed). b QE s, d
* The CP-violating parameter S-o,, is suppressed by

Sk, & —(2mg/my)X sin2¢; = —(2.3 + 1.6)%.
P. Ball, G. W. Jones, and R. Zwicky Phys.Rev.D75, 054004 (2007).

* The g+, value may deviate from the SM prediction if the new particle couples
with a RH’ed fermion.

Belle, Phys. Rev. D 74, 111104(R) (2006).
Belle: SK*O)/ =—-0.10+0.31+0.07
Ay, =-0.201£0.20x£0.06

BELLE2-NOTE-PL-2019-021

—
o

[ Bellell 2019 [N B 5 K% - K'ny
| preliminary s =Ky - K'n%
Lat=262fc’ EB - K"y - Kin'y

(o]

* The Belle II analysis is ongoing. We expect
O'(SK*OY) ~ 0.031 and O-(dq,K*Oy) when the full

Belle I dataset is used.
E. Kou, P. Urquijo et al., Prog. Theor. Exp. Phys. 2019, 123C01 (2019).

4t

Events / (0.002 GeV/c?)
()]

0
52 521 522 523 524 525 526 527 528 529
m, [GeV/c?]
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Measurement of ¢,

* ¢, is measured with the b - uud transition.

* Inthe ¢, case, the penguin (right) contribution is
not negligible compared to the tree (left); we 50
determine ¢, by combining 6 b — uud B decays.

15 AT = Amp(B » ntn™);A™™ = Amp(B -» ntn);

AT = Amp(B - n*n®); 47° = Amp(B - n~n?);

A% = Amp(B - n°n?); 4°° = Amp(B — n°n%).

AOO

| S, and A, are obtained

P = S U S L i with the TD method.
Belle, Phys. Rev. D 88, 092003 (2013). BO = tm
% 4 E Belle Il (preliminary) e Data S A
Belle: 871'+1T_ — _0. 64‘ i O. 08 i O. 03 etc E 2Z§J.Ldt:62.8fb" —— Totalfit §§
N B Y N V. g“: 2"7::10.0. E L
A+ =+0.334+0.06+0.03 erc| = > wwtaigons | E G
8 g L3
3 ~ o
* The Belle II analysis is ongoing. We expect 3 %
d(¢,) = 0.6° when the full Belle II dataset O s i i s = s
is used. Preliminary AE[GeV]
E. Kou, P. Urquijo et al., Prog. Theor. Exp. B(B+ N Tl’+1'l'0) — [5. 5:1):8 + 0. 7])(10_6

Phys. 2019, 123C01 (2019).

B(B® > n*m~) =[5.84+0.7 £ 0.3]x107°
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CKM Triangle - Current Status

CKMfitter 2019, PDG2020 Apex OO

n A . +0.016
; amd p = 0.141747517

0.7

06 % : 0 Amy _
W E 1 =0.357+0.011
05 § s.ln a" E adiwlemd <0 -
o | L 0,
0 ; g
02 Y =
' ¢ £
[ 1 o
00 M ¢.2 1 A L L A .-. A | L 2 1 -
04 -02 0.0 0.2 0.4 0.6 0.8 1.0
P
_ VeaVe o
¢, = arg (— ¢ ‘if’) = (22.56%0%7
ViaVip
— dV* o
¢, = arg (— : t*b) = (91.71}7
udVyp
_ VuaVy o
po = arg (- 15) _ 5ot
cdVeh

[V,p| = 0.04162+3-55026

[Vyp| = 0.003683%3:995573

PDG 2020
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List of measured parameters

Viual? + Vsl + [V |? = 0.9985 + 0.0005
V.al? + [Vis|? + |V |? = 1.025 + 0.020
Val? + [Veql? + [Vip|? = 0.9970 4+ 0.0018
Vo2 + [Vos|? + |Vis|? = 1.026 + 0.022

The unitarity of the CKM matrix holds
surprisingly well (except the first relation).
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Summary

* The time-dependent analysis has been introduced.

 Key ingredients of the time-dependent analysis:
event reconstruction, flavor tagging, vertex fitting, and
maximum likelihood fitting.

* Time-dependent analysis an essential method:
in Belle, when we verified the KM theory,
in Belle II, when we search for new physics.

An extra lecture (mainly on mathematics) is planned tomorrow morning (CET).



