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Weak	Interaction

You	need	to	remember	the	quark	contents	of	mesons	
and	baryons	to	write	a	diagram.		Luckily,	not	so	may	
kinds	of	mesons	and	baryons	that	we	usually	use.
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History	of	the	Weak	Interaction
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• 1919,	1932:		discoveries	of	proton	
and	neutron	by	E. Rutherford	and	
J. Chadwick,	respectively.

E.	Rutherford J.	Chadwick

p n

Isospin	up Isospin	down

• ~1940s:		recovery	of	the	accelerator	
operation	from	the	suspension	by	
WWII	and	discoveries	of	tons	of	new	
particle	with	it.

The	list	of	“elementary”	particles:

Before	1940s: p,	n,	!" +	some	exceptions
After	1940s: p,	n,	!", $%, &, &', (), (",

Δ)), Δ), Δ%, Ξ), Ξ%, Σ), …

TOO	MUCH:		“it	is	hard	to	believe	they	

are	really	the	elementary	particles.”



History	of	the	Weak	Interaction
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• 1953:		M. Gell-Mann	hypothesized	
that	all	of	those	“new”	particles	are	a	
composition	of	more	fundamental	3	
kinds	of	sub-particles:	up,	down,	and	
strange	quarks.

M.	Gell-Mann

?

! ↔ # interaction

• 1963:		N.	Cabibbo proposed	a	new	
particle	interaction	as	a	solution	to	
the	puzzle	of	strange	particle	decay	to	
other	particles

N.	Cabibbo
?



History	of	the	Weak	Interaction
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• 1964:		A	new	
baryon	Ω" ### was	
discovered	in	BNL,	
whose	existence	was	
theoretically	
predicted	by	the	
quark	model.

• 1964:		J. W. Cronin	et	
al.	discovered	the	CP
violation	by	in	the	
neutral	K-meson	
system	with	an	
experimental	setup	
in	BNL. J. W.	Cronin



History	of	the	Weak	Interaction
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• 1970:		S. L. Glashow,	J. Iliopoulos,	and L. Maiani
proposed	a	new	theory	as	a	solution	to	the	puzzle	of	
the	!"# → %&%' decay	suppression.		A	new	quark	
“charm”	and	a	new	interaction	( ↔ * were	introduced.

?

S.	Glashow	 J.	Iliopoulos L.	Maiani

• When	we	simply	say	“quarks”	and	
“leptons”,	what	eigenstates	are	implied?

Mass eigenstates

• When	we	say	“quark”	and	“lepton”	
exchanges,	what	eigenstates	are	implied?

Weak-interaction eigenstates

+,(.) ̅*(.) 12 1 0
0 1

((.)
5(.) +, 6 ̅* 6 12 7 6 → .

8 9 1 0
0 1 7 6 → .

: ((6)
5(6)

Change	of	the	basis	from	(mass)	to	(weak	interaction)

+, 6 ̅* 6 12 ;8: ;8<
;=: ;=<

((6)
5(6)

GIM	mechanism
The	annoying	superscript	(m)	can	be	dropped.



Discrete	Symmetry,	C,	P,	T
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Transformation Op Note

Parity ! Transform	the	wavefunction position	from	" to	−"
Discovered	by	C.	S. Wu	et	al.	in the	beta	decay	of	⁶⁰Co in	1956.		
Corresponds	to	the	fact	that	only	LH’ed particles	participate	in	
the	weak	interaction.

Charge	conjugation $ Transform	the	internal	quantum	numbers	of	the	particle
Flips the	sign	of	the	electric	charge,	lepton	number,	and	baryon	
number	of	the	particle,	but	conserves	the	%,	'⃗,	(,	and	spin.

Time	reversal ) Transform	the	wavefunction time	from	* to	−*
Discovered by	the	CPLEAR	experiment	in	the	neutral	K-meson	
system	in	1998.

Matter	anti-matter $! Transform	a	particle	to	its	anti-particle	partner

Discovered	by	J.	W.	Cronin	et	al.	in	the +,- decay	in	1964.
All	of	them $!) Product	of	the	P,	C,	and	T

Derived	from	Wightman’s	axioms.		Ensures	(. = (.̅ and	1. =
1.̅ together	with	the	Bose/Fermi quantum	statistics	and	other	
fundamental	theorems.		No	evidence	for	the	CPT violation.



• It	was	assumed	that	the	mass	eigenstate	!"# (observable	particle)	is	also	a	CP
eigenstate	with	the	eigenvalue	$%& = −1 before	1964.		J.	W.	Cronin	et	al.	doubted	
this	assumption	and	conducted	an	experiment	to	test	it	in	1964.

• They	observed	45 ± 9 !"# → /0/1 decays	($%& = +1 decay).		It	turned	out	that		
the	345 (mass	eigenstate)	is	not	a	CP eigenstate	...	CP violation.

Discovery	of	the	67 Violation
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Mass	( ⁄9:; <=) Lifetime	(>?) CP Major	decay	modes

!@#
498

0.090 +1 (?) /0/1, /#/#

!"# 51 −1 (?) /0/1/#, /#/#/#
Neutral3meson	

properties

Tungsten	bar	for

detector	calibration

!"# decay	in	this	bag

!@# (short	lifetime)	
decays	immediately

Lear	collimator

Spark	chambers	to	detect	two	

charged	pions from	the	!"# →
/0/1decay	

Generate	!@# and
!"# by	a	collision	of
300	GeV	protons	

to	a	beryllium	

target

345

J.	H.	Christenson,	J.	W.	Cronin,	V.	L.	Fitch,	and	R.	Turlay,	Phys.	Rev.	Lett.	13,	138	(1964).

J.	W.	Cronin



• 1974:	S.	Ting	and	B.	Richter	made	independent	discoveries	of	the	charm	quark.

• 1977,	1995:		the	bottom	and	top	quarks	were	discovered	by	expts.	in	Fermilab.

History	of	the	Weak	Interaction
• 1973:		M.	Kobayashi,	T.	Maskawa proposed	a	new	theory	
to	explain	the	CP violation	discovered	by	J.	W.	Cronin	et	
al.		They	predicted	the	number	of	quark	kinds	is	>6	
kinds	only	3	kinds	of	them	were	discovered.

!"

!#

$"

$#

Υ(1$)

B.	RichterS.	C.	Ting

M.	Kobayashi,	T.	Maskawa



!" ̅$ ̅% &'
()* ()+ (),
(-* (-+ (-,
(.* (.+ (.,

/
0
1

• GIM	mechanism

• When	234 ≠ 234
∗ (i.e.:	789 234 ≠ :),	the	;< symmetry	does	not	conserve.

• By	extending	the	number	of	quark	generations	from	2	to	3	the	matrix	element	
may	become	complex.

=!>→@̅
'

∝ 234
∗
BC

2

Kobayashi-Maskawa Theory
10

Kobayashi-Maskawa (3	generations)

=' = −G
BC

2
⋅ !" ̅$ &'

()* ()+
(-* (-+

/
0

Anti-quark	flavor	change	from	I4 to	I3

=>→@
'

∝ 234
BC

2

Quark	flavor	change	from	4 to	3

In	general,	an	J×J unitary	matrix	has	JL − ⁄J J − 1 2 − 2J − 1
irreducible	complex	numbers	that	cannot	be	removed	by	phase	
redefinition.		When	J ≥ 3,	JL − ⁄J J − 1 2 − 2J − 1 ≥ 1.

CKM	matrix

? ?

?



Feynman	Diagram	Examples
11

"̅

# $

"̅

"̅

%

&'

('

)'

*+,

×./0

×.12
∗

The	strength	(amplitude	4)	is	
proportional	to	…

4(5→*+,)5 ∝ 89:∗ 8;<

"̅

# "

"̅

"̅

%

&'

('

)'

),

4(5→),)5 ∝ 8;<
∗ 8;<

×./0

×.10
∗

"

% %

"

&'

=
×./0

" %

>

?̅@

AB

4=→>CDEFC ∝ 8;<

"̅

% G'

?H&')'

4)5→I5FI ∝ 8;<
∗

×./0
∗



• The	CKM	matrix	is	a	unitary	matrix:

From	the	unitarity	condition,	6	equations	are	derived.

12

CKM	Matrix
!"# !"$ %&'
!(# !($ !()
%*+ !,$ !,)

- !"# !"$ %&'
!(# !($ !()
%*+ !,$ !,)

≡
1 0 0
0 1 0
0 0 1

(a) !"#!"$∗ + !(#!($∗ + !,#!,$∗ = 0
(b) !"#!(#∗ + !"$!($∗ + !")!()∗ = 0
(c) !"$!")∗ + !($!()∗ + !,$!,)∗ = 0

(d) !(#!,#∗ + !($!,$∗ + !()!,)∗ = 0
(e) !"#!,#∗ + !"$!,$∗ + !")!,)∗ = 0
(f) !"#!")∗ + !(#!()∗ + !,#!,)∗ = 0

• From	physics	discussion,	the	Wolfenstein	parameterization	is	obtained:

!456 ≡
!"# !"$ !")
!(# !($ !()
!,# !,$ !,)

=
1 − ⁄9: 2 9 <9= > − ?@
−9 1 − ⁄9: 2 <9:

<9= 1 − > − ?@ −<9: 1
- You	need	to	remember	that	!,# and	!") are	complex.
- You	need	to	remember	9 ≈ 0.2 plus	the	order	of	9 for	each	element.
- You	need	to	remember	< ≈ 0.8.



CKM	Matrix
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!"#$ =
!&' !&( !&)
!*' !*( !*)
!+' !+( !+)

=
0.97370 ± 0.00014 0.2245 ± 0.0008 3.82 ± 0.24 ×1089
0.221 ± 0.004 0.987 ± 0.011 41.0 ± 1.4 ×1089
8.0 ± 0.3 ×1089 38.8 ± 1.1 ×1089 1.013 ± 0.030

PDG2020

=
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CKM	Triangle
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• Each	of	the	equation	forms	a	triangle	on	the	
complex	plane.

• The	bottom	right	triangle,	which	is	associated	
to	the	equation	!"#!"$∗ + !'#!'$∗ + !(#!($∗ = 0
is	moderately	large.

• By	assuming	!"#!"$∗ , !'#!'$∗ , and	!(#!($∗ are	vectors,	we	can	draw	a	triangle	
associated	to	the	equation	on	the	complex	plane,	which	is	called	“CKM	triangle”.

,- ≡ arg − !'#!'$
∗

345!($∗
= 6 − arg 345

,7 ≡ arg − 345!($∗
!"#389∗

,: ≡ arg −!"#389
∗

!'#!'$∗

If	the	KM	theory	is	correct,	;< ≠ >, ?.

Interior	angle	definition



CKM	Triangle	– Current	Status
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CKMfitter 2019,	PDG2020

!" ≡ arg −
()*()+

∗

(-*(-+
∗ = 22.5634.54

64.57 ∘

!9 ≡ arg −
(-*(-+

∗

(:*(:+
∗ = 91.73"."

6".7 ∘

!> ≡ arg −
(:*(:+

∗

()*()+
∗ = 65.83".9@

64.@5 ∘

ABC = 0.0416234.444F4
64.4449G

AHC = 0.00368334.4444G"
64.44447J

Lis
t	o
f	m

ea
su
re
d	p

ar
am

ete
rs
AHK

9 + AHM
9 + AHC

9 = 0.9985 ± 0.0005

ABK
9 + ABM

9 + ABC
9 = 1.025 ± 0.020

AHK
9 + ABK

9 + AOC
9 = 0.9970 ± 0.0018

AHM
9 + ABM

9 + AOM
9 = 1.026 ± 0.022

The	unitarity	of	the	CKM	matrix	holds	
surprisingly	well	(except	the	first	relation).

PDG	2020
P ≡ QR;TUV

9

= QWUXY Z[X[ \V ]
9

− QWUXY\^X Z[X[ \V ]
9

̅̀ = 0.14134.4"7
64.4"G

a̅ = 0.357 ± 0.011

Apex	position



!"-#!" Mixing,	 $% = '%, )%, *%, *+%, …
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'% …	Cronin	et	al.
)%, *% …	Belle,	Belle	II,	BaBar,	LHCb
*+% …	LHCb
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-̅
0"
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2, 3, 4

#0"1 1

3

52

2

̅3
6"

1

1

#6"-, /, 7 -, /, 7

3

52

2

̅3
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-, /, 7

-, /, 7

#6"1 1

-

57

7

-̅
8"

1

1

#8"2, 3, 4 2, 3, 4

-

57

7

-̅
8"

2, 3, 4

2, 3, 4

#8"1 1

/

57

7

/̅
89"

1

1

#89"2, 3, 4 2, 3, 4

/

57

7

/̅
89"

2, 3, 4

2, 3, 4

#89"1 1

#!" !"

Even	if	the	neutral	meson	is	
initially	$%,	the	probability	
to	find	the	particle	in	the	 5$%
state	(CP partner	of	the	$%)	
is	non	zero	after	a	certain	
time	t because	of	the	
process	called

!"-#!" Mixing

Note:	nothing	relevant	to	
the	pair	creation!



!"-#!" Mixing
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$

%&

&

$̅
!"

(

(

#!"), +, , ), +, ,

$

%&

&

$̅
!"

), +, ,

), +, ,

#!"( (

Each	box	diagram	has	-./×-./ .

By	using	the	12- %12 mixing	
mechanism,	we	can	measure	
the	-./3 phase.

• Does	the	!" meson	really	exist?
• Does	the	!"-#!" mixing	really	exist?



Test	of	the	KM	Theory:	Measurement	of	!"#
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d t
$%&

t d
$%&∗

W W

• Hypothesize	that	!"# (and	!())	are	complex.

• How	do	we	measure	the	!"# phase,	*+, !"# ?
→		should	use	particle	interactions	that	contain	!"# like	these:

• The	-.-/-. mixing	is	a	useful	phenomenon	to	access	*+, !"# .

0

12

2

0̅
-.

4

4

/-.5, 7, 8 5, 7, 8

0

12

2

0̅
-.

5, 7, 8

5, 7, 8

/-.4 4 ∝ !"#:



!"-#!" Coherence
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• Just	forget about	the	$%- &$% mixing.
• When	$% and	 &$% are	pair-produced	from	the	Υ 4) → $% &$% decay,	the	two	B-
mesons	take	neither	 $%, $% nor	 &$%, &$% state	but	only	the	 $%, &$% state.

&$%$%Υ(4))

S	=	1	boson S	=	0	bosons

L	=	1 Υ(4)) is	a	S	=	1	boson,	and	$%,	 &$% are	
S	=	0	boson.		Because	of	the	angular	
momentum	conservation,	the	orbital	
angular	momentum	L between	the	
two	Bmesons	is	L =	1.

If	both	of	the	two	Bmesons	take	the	same	particle
state	$%,	the	wavefunction	of	the	system	is	exchange-
symmetric	of	the	two	Bmesons	because	of	the	Bose-Einstein	statistics.		However,	
the	wavefunction	must	be	exchange-antisymmetric	of	two	same	particles	with
L =	1.		These	two	statements	are	inconsistent.		The	same	inconsistency	is	true	for	
the	 &$%- &$% system.
Thence,	only	the	 !", #!" state	is	allowed.

$%$%
L	=	1

[proof]

□



!"-#!" Mixing	And	!"-#!" Coherence
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• The	flavor	of	the	two	Bmesons	can	be	known	only	
stochastically	until	they	decay	to	some	other	particles.

• One	of	the	two	Bmesons	$% decays	to	a	flavor	specific	state.		
The	$% flavor	can	be	known	from	the	decay	products.

• The	flavor	of	the	other	Bmeson	$& at	the	time	of	the	$%
decay	t='% is	opposite	to	the	$% flavor.

• The	$& flavor	can	be	known	only	statistically	after	'% until	it	
decays	to	some	other	particles.

…	!"-#!"mixing

…	!"-#!" coherence

…	!"-#!"mixing

( = "

*(,-)

#!"

!"

/0ℓ23ℓ

⁄5 67-"

( = "

*(,-)

#!"

!"

/2ℓ083ℓ

⁄5 67-"
The	other B	is
100%	!" at	( = (9.
The	oscillation	starts
like	$: → 8$: → $" ….

The	other B	is
100%	#!" at	( = (9.
The	oscillation	starts	
like	 8$: → $: → 8$: ….

(9(9

(=(=

Decay	as	#!" Decay	as	!"



!" Violation	in	B Decays
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I.	I.	Bigi A.	I.	Sanda

Phenomenologist	who	theoretically	developed	the	
measurement	procedure	of	the	CP	violation	in	B decays.



!"-#!" Mixing
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• A	meson	initially	in	the	$% state	 &'!" ()*+, ( *-.+ / &'!" 0 = J &'!" +L &'!"

J ≠ 1 and	L ≠ 0 is	the	essence	of	the	$%- 6$% mixing	

• A	meson	initially	in	the	 6$% state	 &'#!" ()*+, ( *-.+ / &'#!" 0 = ♤ &'!" + ♡ &'#!"

♤ ≠ 0 and	♡ ≠ 1 is	the	essence	of	the	$%- 6$% mixing	

How	do	we	express	J etc.	as	a	function	of	t in	general?

• Remember	quantum	mechanics:
discussion	on	the	time	propagation	of	a	state
→	discussion	on	the	energy	of	the	state	→	discussion	on	the	mass	of	the	state.

• As	J.	W.	Christenson	demonstrated,	the	 789% and	 78 69% are	a	CP eigenstate	but	
not	a	mass	eigenstate.

• Relate	the	CP eigenstate	to	a	mass	eigenstates	by	force.



!"-#!" Mixing
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• ⟩|&(() = J(() ⟩|& +L(() ,- .&/ ≡ 1 ( 1
0 + 4 ( 0

1 = 1 (
4 (

,-&/ ,- .&/

≡ 566 − ⁄9Γ66 2 56< − ⁄9Γ6< 2
5<6 − ⁄9Γ<6 2 5<< − ⁄9Γ<< 2

1(()
4(()

9 ==(
1(()
4(() = ℋ 1(()

4(() ?/, .?/ mass and	decay

• The	phenomenological	time-dependent	Schrödinger	equations	are:

9 ==(
1(()
4(() = 5 − A

<Γ
1(()
4(()

Because	the	operators	5 and	Γ are	Hermitian,	5<6 = 56<∗ and	Γ<6 = Γ6<∗ .
Then,	because	of	the	CDE theorem,	566 = 5<< ≡ 5 and	Γ66 = Γ<< ≡ Γ.

• If	56< − ⁄9F6< 2 = 56<∗ − ⁄9F6<∗ 2 = 0→	no	&/- .&/ mixing;	otherwise,	the	&/-
.&/ mixing	occurs	and	 ⟩|&(() and ⟩| .&(() are	no	longer	the	mass	eigenstates.

9 ==(
1(()
4(() = 5 − ⁄9Γ 2 56< − ⁄9Γ6< 2

56<∗ − ⁄9Γ6<∗ 2 5 − ⁄9Γ 2
1(()
4(()



!"-#!" Mixing
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• Let	the	eigenvectors	of

associated	eigenvalues	to	be	 $%&' , )' and	 $%&* , )*.		These	definitions	lead

+ − -
.Γ = + − ⁄2Γ 2 +4. − ⁄2Γ4. 2

+4.∗ − ⁄2Γ4.∗ 2 + − ⁄2Γ 2

$%&' = 6 $%&7 − 8 $% 9&7 ,  )' = + − ⁄2Γ 2 − +4. − ⁄2Γ4. 2 +4.
∗ − ⁄2Γ4.∗ 2 and

$%&* = 6 $%&7 + 8 $% 9&7 ,			)* = + − ⁄2Γ 2 + +4. − ⁄2Γ4. 2 +4.
∗ − ⁄2Γ4.∗ 2 ,

where
6
8 =

+4.
∗ − ⁄2Γ4.∗ 2

+4. − ⁄2Γ4. 2 and	 6 . + 8 . = 1.

⟩|&'(?) = exp(−2)'?) $%&' and			 ⟩|&*(?) = exp(−2)*?) $%&* .

• On	the	other	hand,	by	an	arithmetic	calculation,	we	obtain

Additionally,	we	obtain
$%&7 = ⁄$%&* + $%&' 26 and		 $% 9&7 = ⁄$%&* − $%&' 28.

and	the



!"-Meson	Decay
25

• Finally,	we	obtain

⟩| %&'()) = 1
2
.
/ exp −456) − exp −457) 89&' + exp −456) + exp −457) 89 %&'

⟩|&'()) = 1
2 exp −456) + exp −457) 89&' + /. exp −456) − exp −457) 89 %&'

• By	defining	;± ) ≡ >
? exp −456) ± exp −457) for	brevity,	we	obtain

⟩|&'()) ≡ ;@ ) 89&' + /. ;A ) 89 %&' ⟩| %&'()) ≡ .
/ ;A ) 89&' + ;@ ) 89 %&'and .



Application:	!"-#!" Mixing
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$% $% & ' = )* & ' =
1

2
exp −Γ& cosh

ΔΓ7
2
& + cos Δ97&

:$% $% & ' =
;

<
)= &

'

=
1

2

;

<

'

exp −Γ& cosh
ΔΓ7
2
& − cos Δ97&

• In	a	system	that	the	approximations	 ⁄; < ≈ 1 and	ΔΓ ≈ 0 hold,

• Probability	to	find	the	particle	in	the	 AB$% and	 AB :$% states	at	a	time	t that	was	
initially	in	the	 AB$% state	are

,	respectively,

where	9C,E ≡ ℛH IC,E ,	ΓC,E ≡ −2ℐ9 IC,E ,	Δ97 ≡ 9E −9C, and	ΔΓ7 ≡ ΓE − Γ.

K $% → $%; & =
1

2
exp −Γ7& 1 + cos Δ97&

K $% → :$%; & =
1

2
exp −Γ7& 1 − cos Δ97&

• By	defining	)± & ≡
O

'
exp −PIC& ± exp −PIE& for	brevity,	we	obtain

⟩|$%(&) ≡ )* & AB$% +
;

<
)= & AB :$% ⟩| :$%(&) ≡

<

;
)= & AB$% + )* & AB :$%and .

…		unmixed	(same	eq.	for	 :$% → :$%)
…		mixed	(same	eq.	for	 :$% → $%)



Application:	!"-#!" Mixing
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$%&'()*+ , = 1
2 exp −Γ5, 1 + cos Δ;5, , $'()*+ , = 1

2 exp −Γ5, 1 − cos Δ;5,

$%&'()*+(,)

? = 1
Γ5
= 1.5 ps

Δ;5 = 0.5 psCD

#!" !"

!" #!"

Again,	the	EF- GEF mixing	is	an	independent	phenomenon	of	the	EF GEF pair	creation.

$'()*+(,)



Application:	!"-#!" Mixing
28

$
%

&'
() *+,-./ )
*01+,-./ ) + *+,-./ )

= Δ56
7

2 Γ67 + Δ56
7 ≡ ;6

!"- #!" Mixing	(1986,	1987)
ARGUS	Collaboration,

Phys.	Lett.	B192,	245	(1987)

$ = & '( → *'(
& '( → '( + & '( → *'( = 0.17 ± 0.05

Evidence	for	the	!"- #!"mixing

https://argus-fest.desy.de/e301/e305/wsp_arg_new.pdf

ARGUS	detector

& '( → '( …	unmixed & '( → *'( …	mixed

2!"3456"6" = ". 7898 ± ". ""77

(DESY)

• '(- *'( mixing: $ = & '( → *'(
& '( → '( + & '( → *'( .			The	$ = 0 if	no	mixing.

*'( pairly-produced	with	'( from	the	:;-:<
collision	by	the	DORIS	II	accelerator	had	
changed	to	'(.

$ ≡ ⁄?@ 2 1 + ?@ ,	? ≡ ⁄ΔCDE ΓDE .

The	;6 is	
sometimes	called	
a	time-integrated	
mixing	parameter.
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Asymmetry	$(&) ≡

When	the	effects	from	the	wrong	tagging	
probability	and	vertex	reconstruction	
resolution	are	negligible,	)(*) = ,-.!"#*.

Belle	Collaboration,	Phys.	Rev.	D	71,	072003	(2005).

!"# = /. 122 ± /. //1 ± /. //4 5.62
with	152M	7 87

9:;<=>?@ & − 9<=>?@ &
9:;<=>?@ & + 9<=>?@ &

The	Δ&must	be	used	in	the	equation	above	instead	of	the	t.		This	
“misuse”	is	on	purpose	to	simplify	the	discussion	here.		The	
replacement	of	the	t	with	the	Δ& is	discussed	in	the	next	few	pages.

ΔDE results	from	Belle	II	will	come	soon…
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• A	critical	difference	between	the	$%- &$% mixing	in	a	general	setup	and	that	in	
the	Belle	(II)	setup:		at	Belle	and	Belle	II,	two	B-mesons	are	pair-produced	
and	they	are	entangled (i.e.:	the	two	B	mesons	take	only	the	 $%, &$% state	
until	one	of	them	decays).

• The	wavefunction	of	the	two-B-meson	system	 ⟩|Belle -., -/ at	the	time	of	the	
pair	production,	-. = 0 and	-/ = 0,	is

⟩|Belle 0,0 =
1

2
45$.

% &$/
% − 47 &$.

%$/
% ⟩|Belle 0,0 =

1

2
45$.

% &$/
% + 47 &$.

%$/
%✓ ✗

Exchange	asymmetric Exchange	symmetric

• The	general	wavefunction	to	observe	one	B at	- = -. and	the	other	at	- = -/ is
⟩|Belle -., -/ =

1

2
9:$.

% -. 9: &$/
% -/ − 9: &$.

% -. 9:$/
% -/

• By	recalling ⟩|$%(-) ≡ >? - 9:$% +
@
A
>B - 9: &$% , ⟩| &$%(-) ≡

A
@
>B - 9:$% + >? - 9: &$%

⟩|Belle -., -/ =
1

2
CB

D
/ EF?EG ×

I sin
ΔNO -/ − -.

2
A
@

45$.
%$/

% −
@
A

45 &$.
% &$/

% + cos
ΔNO -/ − -.

2
45$.

% &$/
% − 45$.

% &$/
%
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•

Forbidden	
in	the	SM.
The	same	in	
the	SM	≡ "#$.

ℓ&'()ℓ ℋ+ ,-. = 0 ,

• Define	the	- → 234 decay	amplitudes	by
234 ℋ+ -. ≡ 5678 ,		 234 ℋ+ ,-. ≡ 5̅678 ,	and	

ℓ('&)̅ℓ ℋ+ ,-. = 5̅ℓ: ,
ℓ&'()ℓ ℋ+ -. = 5̅ℓ; ,
ℓ('&)̅ℓ ℋ+ -. = 0 ,

• Define	the	flavor-specific	B-decay	amplitudes	by	

• Then,	the	probability	to	find	a	signature	for	the -. ,-. → ℓ('&)̅ℓ < 234 =
in	the	Belle	(II)	detector	at	the	time	>< and	>=,	respectively,	and
the	probability	to	find	a	signature	for	the -. ,-. → ℓ&'()ℓ < 234 = in	the	
Belle	(II)	detector	at	the	time	>< and	>=,	respectively,
are	computed	as	the	ones	on	the	next	page.	

⟩|Belle ><, >= =
1
2
G(

H
= IJ&IK ×

M sin
ΔR+ >= − ><

2
T
U

VW-<.-=. −
U
T

VW ,-<. ,-=. + cos
ΔR+ >= − ><

2
VW-<. ,-=. − VW-<. ,-=.

[678 ≡
5̅678
5678

⋅
U
T .
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• The	probability	to	find	a	signature	for	the !" #!" → ℓ&'(*̅ℓ + ,-. / in	the	
Belle	(II)	detector	at	the	time	0+ and	0/,	respectively,	is:	

ℓ&'(*̅ℓ / ,-. + ℋ2 Belle 0+, 0/ =
1
2
:&; <=(<> ?@A

/ ?BCD
/
×

×
1 − GBCD

/
+ 1 − GBCD

/

2
cos ΔM2 0/ − 0+ − ℐM(GBCD) sin ΔM2 0/ − 0+

• The	probability	to	find	a	signature	for	the !" #!" → ℓ('&*ℓ + ,-. / in	the	
Belle	(II)	detector	at	the	time	0+ and	0/,	respectively,	is:	

ℓ('&*ℓ / ,-. + ℋ2 Belle 0+, 0/ =
1
2
:&; <=(<> ?@A

/ ?BCD
/
× ⁄T U /

×
1 + GBCD

/
− 1 − GBCD

/

2
cos ΔM2 0/ − 0+ + ℐM(GBCD) sin ΔM2 0/ − 0+

• By	approximating	 V?B-.
?̅B-.

≈ 1 and	 ⁄U T ≈ 1,

ℓ±'* / ,-. + ℋ2 Belle 0+, 0/ ∝ :&; <=(<> 1 ± ℐM(GBCD) sin ΔM2 0/ − 0+
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• The	Belle	(II)	detector	cannot	measure	the	absolute	time	from	the	pair-
creation	of	the	two	Bmesons	to	their	decay	→	absolute	time	!" or	!# cannot	be	
measured,	individually.		But	it	can	measure	the	time	difference	$% ≡ %' − %).

• To	account	for	the	ambiguity	in	!" and	!#,	apply
∫+
,-.!# ∫+

,-.!" / !# − !" − Δ! to			 ℓ±34 # 567 " ℋ9 Belle !", !# .

>" decay
@ ! = !"

># decay
@ ! = !#

Pair	creation
@	! = 0
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• !
"

#$

%&' !
"

#$

%&( ) &' − &+ − Δ& ℓ±/0 ' 123 + ℋ5 Belle &+, &'

∝ ;<= >( 1 ± ℐA BCDE sin ΔA5Δ& .

By	replacing	the	Γwith	JKL and	taking	the	normalization,

M N; ℓ± =
Q

RSTU
V
<
WN
S
TU Q ± XY Z[\M ]^_WY`WN

• By	applying	a	similar	discussion	to	the	a"- ba" mixing,	one	obtains

c &; ℓ± =
1

2JKL
;
<
>(
efL 1 ± cos ΔA5Δ&

+ for	unmixed
− for	mixed
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!"#$ ≡
&"#$
'&"#$

⋅
)
*

• Assume	we	use	the	golden	mode	for	the	test	of	the	Kobayashi-Maskawa theory,	
where	+, → ⁄/ 012, and	 3+, → ⁄/ 012,.	

45 → ⁄6 7895

'45 → ⁄6 7895

⁄6 7 → ℓ;ℓ<

895 → =;=<

⁄6 7 → ℓ;ℓ<

895 → =;=<

>?@∗ >?B
>CB∗ >CD

>?@>?B∗
>CB>CD∗

)
* ≈

FGH∗ FGI
FGHFGI∗

• Skipped	derivation.
• 1,- 31, mixing	is	

omitted	for	its	small	
contribution	to	the	B-
meson	system.

FJH

FJK∗

• No	>LD or	>C@ included	
→	no	CKM	phase	from	
the	decay.

FJH∗

FJK
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• For	!" #!" → ⁄& '()
" ,

* +; ℓ± =
0

1234
5
6 7+
234 0 ± 89:1;0 89:7<=7+

> ⁄? @AB
C ≡

EFGH

E̅FGH
⋅
K
L
= M ⁄? @AB

C
NOP
∗ NORNSR∗ NST

NOPNOR∗NSRNST
∗ ⋅

NUP
∗ NUT

NUPNUT
∗

Since	only	NUT and	NSP are	complex,	> ⁄? @AB
C = M ⁄? @AB

C ⋅ V6WXYZ .

ℐ\ > ⁄? @AB
C = −M ⁄? @AB

C sin 2bc = sin 2bc.

• ℐ\(>FGH) depends	on	the	EFGH and	E̅FGH ,	which	are	determined	by	the	
chosen	!" #!" → fgh mode.		For	example,	if	one	chooses	!" #!" → iji6,	
he/she	obtains	the	k l; ℓ± equation	with	sin 2bW.
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!" decay
@ # = #"

!% decay
@ # = #%

Pair	creation
@	# = 0

→ ℓ#$%&ℓ

→ ⁄( )*+,

Δ.

!" decay
@ # = #"

!% decay
@ # = #%

Pair	creation
@	# = 0

→ ℓ%$#/&ℓ

→ ⁄( )*+,

Δ.
0 1 ∝ 3% 456 78, ×

: − <=> ?@: <=> 5AB51

0 1 ∝ 3% 456 78, ×
: + <=> ?@: <=> 5AB51

Belle	Collaboration,	Phys.	Rev.	
Lett.	108,	171802	(2012).
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1. Direct	CP violation
Matter-antimatter	asymmetry	when		!"#$ ≠ !̅"#$.		The	decay	final	
state	is	not	necessary	a	CP eigenstate,	which	means	!" ≠ !̅ ̅" .

2. Indirect	CP violation
Matter-antimatter	asymmetry	when	 '/) ≠ 1while	we	usually	
assume	 '/) ≠ 1 in	the	B-meson	system.

3. Mixing	induced	CP violation
Matter-antimatter	asymmetry	in	the	interference	between	with	and	
without	mixing	(i.e.:	+, → .+,, .+, → +, and	+, → +,, .+, → .+,,	
respectively).	

Measure	with	the	time-
dependent	analysis	method
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