

RICH Detector Principles and the Belle II TOP, ARICH

Shohei Nishida KEK Belle II Physics Week Dec. 2, 2021

S. Nishida (KEK) Dec. 2, 2021 RICH Detector Principles and the Belle II TOP, ARICH

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Belle II and Particle Identification

S. Nishida (KEK) Dec. 2, 2021 RICH Detector Principles and the Belle II TOP, ARICH

Cherenkov Light

• Cherenkov Light is produced when a charged track that passes inside a material is faster than the speed of light inside the material.

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

$$\frac{d^2 N}{dEdx} = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_c = \frac{\alpha^2 z^2}{r_e m_e c^2} \left(1 - \frac{1}{\beta^2 n^2(E)} \right)$$
$$\approx 370 \, \sin^2 \theta_c(E) \, \text{eV}^{-1} \text{cm}^{-1} \qquad (z=1) \,,$$

The number of photons is larger when the Cherenkov angle is larger (i.e. the charged particle is faster; the refractive index n is larger).

S.	Nis	shi	da	(KEK)
D	ec.	2,	202	21

 $\mathbf{p} = \mathbf{m} \boldsymbol{\beta} \boldsymbol{\gamma}$

 $\gamma = (1 - \beta^2)^{-1/2}$

How to utilize Cherenkov light for PID ?

- \implies Obtain the information of β (velocity of the charged particle), independently from the momentum (measured by CDC etc.)
- Cherenkov light is emitted when $\beta > 1/n$.
 - ✓ By measuring Cherenkov light, one can tell whether the mass is smaller than a certain threshold (for a certain momentum).
 - ✓ Threshold-type Cherenkov Counter.
 - Aerogel Cherenkov Counter (ACC) @ Belle
- The Cherenkov angle depends on β (and n).
 - ✓ Measure the Cherenkov angle.
 - ✓ Ring Imaging CHerenkov counter (RICH).
 - DIRC @ BaBar
 - TOP, ARICH @ Belle II

 $\cos\theta_c = \frac{1}{\beta n}$

S. Nishida (KEK) Dec. 2, 2021

Aerogel Cherenkov Counter at Belle

- K/π separation is possible only for

 ✓ 0.98
 ✓ 0.80
- Other momentum region needs to be covered by other detectors (dE/dx, TOF).
- Targeting lower momentum region (0.6 < p <2 GeV) in endcap ACC, because of no TOF.
- Simple and robust detector (it could work at Belle II environment)

- Adequately good performance.
- Knock-on electrons cause mis-ID (source of limitation of the performance)

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

200

150

100

50

n

Belle II Physics Week

Pion Momentum GeV/c

Another PID device at Belle: Time of Flight (TOF) counter

 π^+ : 0.1396 GeV, K⁺: 0.4937 GeV $\beta = p / E$ $E = sqrt(p^2 + m^2)$

• For 1 GeV π , E = 1.010 GeV, β = 0.99 • For 1 GeV K, E = 1.115 GeV, β = 0.90

Time of flight from IP to the detector?

t = L / β c ~ 3 / β [ns]

If we can measure the arrival time with a precision of well below 0.3 ns, we can separate π and K @ 1GeV.

- Covers up to 1.5 GeV.
- TOF time resolution ~ 80 ps

S. Nishida (KEK) Dec. 2, 2021

Ring Imaging Cherenkov Counter (RICH)

S. Nishida (KEK) Dec. 2, 2021

Ring Imaging CHerenkov counter (RICH) : measure the Cherenkov angle

- Simple-minded RICH may be proximity type, but (historically) focusing type is the standard.
- Proposed by J.Seguinot and T.Ypsilantis in 1977.
- Enough path length over radiator
 → focus by mirror.
- Longer path \leftrightarrow Less position resolution needed.

S. Nishida (KEK) Dec. 2, 2021

Principle of RICH

Radiator	Materials	Refractive Index
 Refractive index and transparency. The choice is up to the momentum of the 	Gas	1.0001~1.001 @ 1atm
particles to be identified.	Aerogel	1.01~1.1
\checkmark high momentum \rightarrow gas	Water	1.33
 But, the choice affects the configuration 	Quartz	1.46
of the RICH detector. \checkmark Gas \rightarrow Long path length in radiator.		β > 1/n
Photodetector		$\cos\theta_c = \frac{1}{2}$
 Detection of the single photon. Position measurements. 		Bn
 Necessary position resolution dependent on the configuration. Multi-channel 	nds -	Magnetic field. Radiation.

- device may be required.
 Quantum efficiency (QE) / photon detection efficiency (PDE)
- Limitations from the experiment, environment.

- Rate (necessary timing resolution).
- Coverage; cost.

S. Nishida (KEK) Dec. 2, 2021

Example: LHCb RICH

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Example: LHCb RICH

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Example: BaBar DIRC

DIRC (Detection of Internal Reflected Cherenkov light)

4 x 1.225 m Synthetic Fused Silica Bars glued end-to-end

- Total reflection inside quartz bars
 - ✓ Angle information is kept.

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Aerogel RICH

S. Nishida (KEK) Dec. 2, 2021 RICH Detector Principles and the Belle II TOP, ARICH

Aerogel RICH

S. Nishida (KEK) Dec. 2, 2021

Aerogel RICH

- Endcap ACC at Belle covered K/π separation at 0.6
 - ✓ Because TOF was not equipped at the endcap.
- Wider momentum range up to 4 GeV → RICH
- Available space was limited (same size as endcap ACC)
 - \rightarrow Proximity type
- Higher refractive index than Belle ACC
 → (still) Aerogel Radiator
 - \checkmark possible to adjust the index.

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Proximity RICH

PID performance is determined by the Cherenkov angle resolution per track:

$$\sigma_{\text{track}} = \frac{\sigma_{\theta}}{\sqrt{N_{p.e.}}}$$

 $N_{p.e.}$: Number of detected photons σ_{θ} : Cherenkov angle resolution per photon (how precise we can measure the angle).

Main contribution to σ_{θ}

- Position resolution of the photon detector
- Thickness of the radiator
- Tracking resolution of the charged particle (position, angle)
- Multiple scattering of track (low momentum)
- Wave length dependence of the refractive index (Chromatic dispersion)

Proximity RICH

Normal Proximity RICH

 $N_{p.e.}$ and σ_{θ} is proportional to d (radiator thickness) $d \rightarrow large \Rightarrow N_{p.e.} \rightarrow large, \sigma_{\theta} \rightarrow bad$ $d \rightarrow small \Rightarrow N_{p.e.} \rightarrow small, \sigma_{\theta} \rightarrow good$

40

50

thickness (mm)

30

30

40

thickness [mm]

50

20

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

20

10

О

Solution for the contradiction: dual radiator RICH

- Use two layer of aerogels with different refractive index.
 - \checkmark Ring image overlap at the photo-detector.
 - Possible only with aerogels: we can adjust the index of aerogels.
 - More layers can make better performance (but not so much different).

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Aerogel

- Composition SiO₂. Very light.
 Sparse structure
- Refractive index is around 1.01-1.1, and can be adjusted

For Belle II ARICH

- 2cm × 2 layers.
- $n_1 = 1.045$ and $n_2 = 1.055$
- Good transparency (~40mm)
- 248 tiles in total
 - ✓ Cut with water jet from 18cm × 18cm tile.

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Photodetector

Requirement to the photon-detector:

- Single photon detection with good QE/PDE.
- ~5mm pixel size.
- Large coverage.
- Immune to 1.5T magnetic field.
- Radiation tolerance (neutron, gamma).

Multi-anode PMT

NG: magnetic field NG: radiation(neutron)

used for initial test

some test was done

MPPC/SiPM

200mm T K Charged particle Radiator Photon detector

HAPD

OK

MCP-PMT

OK good timing resolution (work as TOF too?)

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

□4.9[mm]

Photodetector

- Single photon detection.
- ~5mm pixel size. Large coverage.
- Immune to 1.5T magnetic field.
- Radiation tolerance (neutron, gamma).

➡ HAPD (Hybrid Avalanche Photo-Detector)

Hybrid: Vacuum tube + semi-conductor

- Developed with Hamamatsu Photonics.
- 144 channels (36-ch APD chip × 4).
- Gain ≥45000.
- Peak QE ~28%
- Size 73mm × 73mm.
- Effective area 63mm×63mm (65%).

Total 420 HAPDs

S. Nishida (KEK) Dec. 2, 2021

ARICH Electronics

- Receive hitdata from 5-6 front-end boards, and send to DAQ.
- S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Belle II Physics Week 26

Front-end Board

 4 ASIC + Xilinx FPGA (Spartan6).

- Total 60480 channel
- Only ON/OFF information
 - ✓ Pulse height not readout.
 - Readout the hits for 4 different timings (i.e. 4 bit per channel)

420 HAPDs

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

- Rough performance can be obtained Cherenkov angle (σ_{θ}) and Number of photons per track (N_{p.e.})
- Distribution with Bhabha sample from the commissioning run (2018).
 - ✓ N_{p.e.} = 9.5 (10.4), σ_{θ} = 16.3 (14.7) mrad in data (MC)
 - ✓ corresponding to 4.3 σ K/ π separation at 4 GeV.

Cherenkov Angle distribution (Bhabha, 2018)

S. Nishida (KEK) Dec. 2, 2021 data

(cosmic)

RICH Detector Principles and the Belle II TOP, ARICH

Particle Identification

Particle Identification (PID) by ARICH is obtained from the comparison of the hit pattern and the expected PDF for different particle hypothesis.

$$\ln \mathcal{L}_{h} = -N_{h} + \sum_{\text{hit } i} [n_{h,i} + \ln (1 - e^{-n_{h,i}})]$$

h: particle hypothesis (e, μ , π , K, p,..) N_h : expected total number of hits

n_{h,i} : expected number of hits (probability) at pixel i

Note: ARICH has only ON/OFF information in each channel (pixel).

Likelihood ratio

$$R_{K/\pi} = \frac{\mathcal{L}_K}{\mathcal{L}_K + \mathcal{L}_\pi}$$
$$R_{\pi/K} = \frac{\mathcal{L}_\pi}{\mathcal{L}_K + \mathcal{L}_\pi} = 1 - R_{K/\pi}$$

S. Nishida (KEK) Dec. 2, 2021 RICH Detector Principles and the Belle II TOP, ARICH

Performance

Recent Performance [D* study by Vismaya V S (hadron ID group)]

Bucket 25: exp 18, run 2646-2986, release-05 Sproc-2: release-06

- Working well generally.
- Trying to improve the performance (alignment, improving PDFs)

S.	Nis	shi	da ((KEK)	
D	ec.	2,	202	21	

Radiation Tolerance

- ARICH is relatively tolerant to the beam background.
 - Only small number of background hits are seen; negligible to the performance at this moment.
- Deterioration of HAPDs (increase of the leakage current, larger noise) due to silicon bulk damage by neutrons.
 - Tolerant to 10¹² neutrons / cm² @ 1MeV equiv., assumed for to 10 years' operation.
 - Sensor performance will be gradually degraded, with a very modest effect on the PID performance.
- SEU (single event upset) in the FPGAs of the front-end.

neutron irradiation test of HAPD

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

TOP (Time Of Propagation)

Some figures are taken from presentations by K. Matsuoka @ RICH2016, U.Tamponi @ RICH2018, S. Sandiya @ TIPP2021.

S. Nishida (KEK) Dec. 2, 2021

TOP

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Measurement principle of TOP (Time of Propagation) Detector

- Measure the time of propagation of K and π : need ~ 50 ps timing resolution
- Measure the position of photons, too.
- Also works as a TOF (Time of Flight) detector for low momentum particles.
 - $\checkmark\,$ Combination of TOF and RICH with a single device

- Very flat quartz bar
- Photo-detector with good timing resolution.
- Focus Mirror
 - ✓ Parallel photons are focused: remove the uncertainty from the bar thickness.
 - \checkmark y actually differs with different θ_{c} (when wave length is different).
 - \rightarrow Correction of chromatic dispersion (look at the relation of y and t)

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

MCP-PMT

MCP (Micro Channel Plate) - PMT

Photon (Cross-section) Photocathode (NaKSbCs) CP x 2 4 x 4 anodes 5.275 mm Micro channel 5.275 mm CP x 2 4 x 4 anodes

• 4 × 4 channels

- NaKSbCs photo cathode; QE>24%
- TTS (Transit Time Spread)* < 40ps
 - * = Fluctuation of the signal timing for single photon input.

best time resolution!

Photodetector with the

Each module is read by 64 ASICs packed into 4 boardstacks

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

MCP-PMT

Aging problem of MCP

- QE drops as a function of accumulated charge.
 - ✓ The gas and ion from MCP damage the photo-cathode.
- ALD (Atomic Layer Deposition) and life-extended ALD type were developed during mass production.
- Conventional type (40% of installed MCP) will be replaced in 2023 (LS1).
- The MCP-PMT rate (~accumulate charge) is now limited to 3 MHz so that MCP-PMTs survive till the replacement

PID at TOP

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

PID at TOP

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

PID at TOP

TOP needs very accurate timing and calibration, e.g.)

The TOP sampling clock is locked to the accelerator radio-frequency clock (RF clock) \rightarrow Any offset between the two will result in a mis-reconstruction of the PDFs

Most probable collision time → reconstructed back-fitting the higher momentum tracks in the event

- \rightarrow If calibrations are correct, it will match with a tick of the RF clock
- → Resolution on data: 150 ps (bunch crossing: 2 ns)

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Performance

• Momentum distribution of the K and π sample:

• Data-MC comparison for K-eff. and π mis-ID rate for R[K/ π] > 0.5 w.r.t. momenta

TOP works well, but the performance is not very good yet.

> The overall PID performance is still worse than Belle.

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

R&D for Future

R&D for the photon sensors (SiPM), electronics are going on.

Backup

S. Nishida (KEK) Dec. 2, 2021 RICH Detector Principles and the Belle II TOP, ARICH

Belle and PID

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

TOF @ Belle

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

LHCb RICH

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

Example: LHCb RICH

47

DIRC (Detection of Internal Reflected Cherenkov light)

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

ARICH Electronics

- CMOS 0.35 μm process @ TSMC and X-FAB.
- 36 ch / chip (i.e. 4 ASIC for one HAPD).
- Variable gain (3.1-12.5 V/pC) and shaping time (100-200ns).
- Common threshold but adjustable offset (16-bit; for each channel).
- DICE (Dual Interlocked CEII) register to be tolerant to SEU.
- Mass production done at X-FAB.

S. Nishida (KEK) Dec. 2, 2021

Another effect from neutrons is SEU in the FPGAs in the front-end.

S. Nishida (KEK) Dec. 2, 2021 RICH Detector Principles and the Belle II TOP, ARICH

ARICH Gallery

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

HAPDs

Signal hits / channel / event

Current status of HAPD operations

- 5 HAPDs (1.2%) are off due to a problem of LV cable to the front-end electronics.
 - ✓ To be repaired (in long-shutdown)
- 3.0% of channels suffer bias (or guard) problem inside APD.
 - ✓ Typically sudden increase of leakage current.
- 1.7% of channels suffer HV problem.
 - ✓ Various reasons.

Total 5.9% dead

The problem of APD is still increasing, but is getting stabilized.

S. Nishida (KEK) Dec. 2, 2021

ARICH PDF

PDF components:

- Cherenkov photons from the aerogel.
- Background correlated to particles.
 - Depends on whether particles pass the quartz window of HAPDs.
 Separate PDF for the two cases.
- Random background.

PDFs are calibrated with $e^+e^- \rightarrow \mu^+\mu^-$ (higher momentum), $K_S \rightarrow \pi^+\pi^-$ (lower momentum)

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

ARICH Performance

 $\pi_{\rm slow}^+$

 $K^- \pi^+$

 $\pi_{
m slow}$

PID performance estimated with D* using 5.2 fb⁻¹ data (taken in 2019).

- Use tracks that enter ARICH.
- Apply D* mass selection and look at D⁰ mass.

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

TOP Quartz Bar

Quartz

- Connect 2 bars with 1.25m × 45cm
 × 2cm
- Roughness < 0.5nm, flatness < 6μ m
- + Focusing Mirror + Expansion Block
- Readout with 32 of 16ch PMT
- Polishing: Okamoto & Zygo

16 TOP modules

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

18.5

300

350

400

Belle II Physics Week 56

channel

TOP

The TOP sampling clock is locked to the accelerator radio-frequency clock (RF clock) \rightarrow Any offset between the two will result in a mis-reconstruction of the PDFs

Most probable collision time

- \rightarrow reconstructed back-fitting the higher momentum tracks in the event
- \rightarrow If calibrations are correct, it will match with a tick of the RF clock
- \rightarrow Resolution on data: 150 ps (bunch crossing: 2 ns)

[U.Tamponi@RICH2018]

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

TOP Performance

 Data-MC comparison for K-eff. and π mis-ID rate (TOP only) for R[K/π] > 0.5 w.r.t. azimuthal angle.

S. Nishida (KEK) Dec. 2, 2021 RICH Detector Principles and the Belle II TOP, ARICH

K efficiency at	10% π mis-ID
-----------------	------------------

	Data	MC
Belle	88%	94%
Belle II	84%	90%

- Current Belle II hadron ID performance is slightly worse than what achieved by Belle at the end of the run
- Data-simulation agreement
 already at a comparable level

S. Nishida (KEK) Dec. 2, 2021

RICH Detector Principles and the Belle II TOP, ARICH

- In Belle and Belle II, total PID is obtained with likelihood.
- For that purpose, likelihood values for 5 (e, μ , π ,K,p) or 6 (+deuteron) mass hypotheses are calculated by each detector.
- Selection is applied by comparing two particle hypotheses: PID(i:j) = L(i) / (L(i)+L(j))
- Likelihood from different detectors is combined by making a product:
 L(i) = L_{ACC}(i) × L_{TOF}(i) × L_{CDC}(i) (@ Belle, i.e. atc_pid)
- PID(K: π) tends to be 1 if the particle is K-like, and 0 if it is π -like.
- PID(i:j) = 1 PID(j:i)
- Do not use a selection PID(i:j)>0.5 .
 - ✓ There can be many tracks that PID(i:j) become exactly 0.5, so PID(i:j)>0.5 and PID(i:j)>=0.5 gives different results.
- It is better to use "recommended values" in Belle analysis, since official systematic error table is already calculated.

S. Nishida (KEK) Dec. 2, 2021

Likelihood

- Q) We can compare only two particle hypotheses. Why do we use only PID(K:π) to select kaon?
 - ✓ If you want, you can apply cuts on PID(K:e), PID(K:µ), PID(K:p) too, but this is not necessary (maybe even harmful for systematic study).
 - A) PID is mainly done by mass difference. So, if you apply a cut on PID(K:π), this automatically cut electrons and muons, too.
 - ✓ A) The number of produced particles at Belle: $\pi > K > e$, $p > \mu$.
 - ✓ A) From physics. You may have similar (background) processes where K is replaced by π . (e.g. with different CKM factor).
- But, if μ becomes background, you can explicitly veto μ . In this case, you reject it using Muid, because Muid uses KLM information.