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Goals today:
oThis talk:

◦ Show how LHCb uses the strengths of its detector to 
overcome the limitations of the environment

◦ Focus on key techniques -- not a complete “analysis 
seminar”

oBeyond this talk:
◦ Stimulate thinking about new ways to use the 

information you have to approach analyses in new 
ways and unlock “impossible” signals

◦ Prevent you from being locked into “conventional” 
analysis paradigms as the only way to do things
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Outline
oIntroduction to LHCb & our “environment” in data

oHadronic B decays
◦ LHCb standard technique overview

◦ New technology in 𝐵+ → 𝐾+𝜋0

◦ Extensions

oSemileptonic B decays
◦ General LHCb approaches

◦ Tau analyses

◦ Muonic

◦ 3-prong

oUpgrade preview
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Heavy Flavor at LHC

oLHC collisions produce copious amounts of beauty and charm
◦ At 7 TeV: σbb̄ ~ 250 μb 

◦ At 13 TeV: σbb̄ ~ 530 μb

◦ Production dominantly occurs at high η with highly-boosted CM frame

◦ Fragmentation (averaged in acceptance): 62% B, 12% Bs, 26% baryon 

oCentral detector ( 𝜂 < 2.5) scheme covers only 52% (45%) of b quark (pair) 
production despite surrounding >98% of the solid angle 
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The LHCb Detector
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VELO Performance Paper:
JINST 9 (2014) P09007

oLHCb approach: focus on forward direction: cover 27% (25%) of (pair) production while 
instrumenting < 3% of the solid angle

◦ Lumi @ LHCb ~ 3 × 1032/𝑐𝑚2/𝑠 → 40,000 𝑏ത𝑏/𝑠 produced in acceptance (~400 billion per 
snowmass standard year)

oCoverage is from ≈ 15 mrad - 300 250 mrad in the horizontal (vertical)
◦ ≈ 1°-17° (very roughly)



The LHCb Detector
Charged particles (𝑒, 𝜇, 𝑝 𝜋±, 𝐾±) are bent into/out of the page and their 
charge, momentum, and trajectory are measured (dipole spectrometer)

𝑏-hadron decay products are distinguished from proton-proton collision 
fragments via their impact parameter with respect to reconstructed pp 
vertices
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The LHCb Detector
High-energy muons are not 
easily stopped by material and 
are identified by their exiting 
out the back of the detector
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Dedicated Gas Cherenkov 
detectors provide 
measurements of 𝜃𝑐 = 𝜃(𝑣/𝑐)
to separate different particle 
species

RICH Performance paper: 
Eur. Phys. J. C 73 (2013) 2431

Muon Performance Paper:
JINST 8 (2013) P10020



Experimental Environments

o B-factories: exploit clean BB production from 𝑒+𝑒− → Υ 4𝑆 → 𝐵 ത𝐵 (𝑄 = 20 MeV)
◦ A priori knowledge of B energy and collision CM, no extra particles in signal events
◦ Easy to cross-feed tracks due to low CM momentum of B mesons

Event shape needed to separate 𝐵 ത𝐵 vs more frequent 𝑒+𝑒− → 𝑞ത𝑞, 𝑞 = 𝑢, 𝑑, 𝑠, 𝑐

o LHCb: exploit clean B hadron decay vertex
◦ At LHC energies, b hadrons fly macroscopic distances before decay: use displaced 

vertex, large impact parameter of charged tracks, etc
◦ Production is 𝑔𝑔 → 𝑏ത𝑏 + 𝑀𝑃𝐼 + 𝑠ℎ𝑜𝑤𝑒𝑟𝑖𝑛𝑔 + 𝐼𝑆𝑅 +⋯, many extra tracks, very 

large background for neutrals
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ത𝐵0 → 𝐷+ → 𝐾+𝐾−𝜋+ 𝜇− ҧ𝜈𝜇 ?



LHCb Events
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All hadronic
[PRL 113, 172001(2014)]

𝑏 →charmonium
[PRD 86, 052006 (2013)]

oReconstruction of 
secondary vertex 
*extremely* clean
◦ Flight distance up to 

~cm scale

◦ Impact parameter 
resolution (15 
+29/pT[GeV] ) μm 

oDominant background 
is other (partially-
reconstructed) B decays 
& combinatorial, misID

30mm 
module
pitch



Example

oExcellent example of a mode that 
plays to LHCb strengths: 𝐵0 → 𝐾+𝜋−

◦ Only two tracks to reconstruct (high 
efficiency)

◦ Kaon in final state (most PV tracks 
are pions)

◦ 2 × 10−5 branching fraction is large 
(enough) given 104𝑏ത𝑏/s

◦ Momentum and vertex (~ lifetime) 
resolution allows clear separation of 
𝐵0, 𝐵𝑠

0
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oSkipping many details…
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Will Parker, CERN LHC seminar, 1Dec2020



o“impossible” 1-track mode 𝐵+ → 𝐾+𝜋0 is also of clear interest to check 
consistency of sum rule
◦ Covered by B-factories, but bringing LHCb statistics to bear is tantalizing 

(bf ~ 1.3 × 10−5)
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LHCb Events & 𝐵 → 𝐾+𝜋−/0
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𝐾+

𝜋−

𝑝𝑝 collision

𝐵 vertex

𝐾+

𝑝𝑝 collision

𝜋0 ECAL 
energy

oHave only a single track and a blob in the calorimeter, no conventional vertex is 
possible!
◦ Is there a way to identify the signal without knowing the trajectory of the 2nd

daughter particle?

oBefore we talk about the answer, lets look back in time a bit…



Some Time Travel
oLHCb’s problems in this mode look 
unique, but in reality they are not!

oA similar difficulty exists at the B-
factories: Want to do time-
dependent 𝐴𝐶𝑃 in 𝐾𝑆

0𝜋0, 𝐾𝑆
0𝜋0𝛾,  

etc
◦ B-tagging can yield clean signal 

peaks, but no secondary vtx = no 
decay time info!

oTheir solution: compute a vertex 
between the 𝐾𝑆

0 trajectory and the 
beam axis
◦ Underlying approximation is that 
Δ𝑥, Δ𝑦 ≪ Δ𝑧
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Beam
Spot

Ƹ𝑧

𝐾𝑆
0 → 𝜋+𝜋−

Δ𝑧 ~ Δ𝑡

𝐵𝑡𝑎𝑔



Mother-trajectory approach

oConstruct intersection of 3-momentum vector (origin at PV) and Kaon flight trajectory!
◦ Usual LHCb analysis place selection on the consistency of the reconstructed 

momentum and displacement vectors -- here we require the same consistency but 
with different information

oBDT combines isolation and kinematics to do remainder of background suppression, but 
this really is the secret sauce-- without MT DOCA we couldn’t even trigger this!
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𝐾+

𝜋−

𝑝𝑝 collision

𝐵 vertex

𝐾+

𝑝𝑝 collision

𝜋0 ECAL 
energy

Consistency of Intersection 
← better               worse →

(note logarithm on x scale)

Will Parker, CERN LHC seminar, 1Dec2020

Ԧ𝑝



Result: A Clear Signal!
oWith combination of the 
new technique and 
efficient selection of 
events without additional 
nearby tracks (“isolation”)

oWord-leading 
measurement of the 
asymmetry in this 
“impossible” mode!

oNote the much-smaller 
asymmetry here 
compared to all-charged 
mode (lower)

◦ Naively should be 
similar. Something to 
learn here!
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Extensions to other modes
oMother-trajectory approach can be applied in a straightforward way to intermediate 
lifetime neutrals as well (𝐾𝑠

0, Λ0)

oNew result: photon polarization & CP asymmetry in Λ𝑏
0 → Λ0𝛾

arXiv:2111.10194, Submitted to PRL 

17

𝛾 polarization 

in Λ𝑏
0

𝛾 polarization 

in ഥΛ𝑏
0



Semileptonic B decays

o“Beta decay” of B hadrons – signature is lepton (μ or e (or 𝜏!)) , recoiling hadronic 
system, and missing momentum

oTheoretically well-understood in the SM
o Tree level virtual W emission – strong V-A structure
oNo QCD interaction between the lepton-neutrino system and the recoiling 

hadron(s)
o ത𝐵 → 𝑊∗±𝐷(∗) half of the decay still needs non-perturbative input

oCharged lepton universality implies branching fractions for semileptonic decays to 
𝑒, 𝜇, 𝜏 differ only phase space and helicity-suppressed contributions
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ത𝐵0 → 𝐷+ → 𝐾+𝐾−𝜋+ 𝜇− ҧ𝜈𝜇 candidate

𝑊+

ℓ
ҧ𝜈ℓ

ത𝐵 𝐷



What we want to measure
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ത𝐵0𝐷
∗+

𝜇−

𝜋+

𝐾−

𝜋+

𝜈

ത𝐵0𝐷
∗+

𝜏−

𝜋+

𝐾−

𝜋+

3𝜈

𝐷0

𝜇−

ത𝐵0 → 𝐷∗+𝜇− ҧ𝜈𝜇
“normalization”

ത𝐵0 → 𝐷∗+𝜏− ҧ𝜈𝜏
“signal”

PV

PV

𝐷0

𝑅 𝐷∗+ ≡
ℬ( ത𝐵0 → 𝐷∗+𝜏− ҧ𝜈𝜏)

ℬ( ത𝐵0 → 𝐷∗+𝜇− ҧ𝜈ℓ)

o Theoretically clean due to cancellation of form factor 
uncertainties

• Poorly-measured helicity suppressed amplitudes give 
dominant uncertainty

• SM (HFLAv): 
𝑅 𝐷∗ = 0.252(5)

•𝜏− → 𝜇− ҧ𝜈ℓ𝜈𝜏
• Automatic normalization from identical final state

• Must be disentangled from ത𝐵0 → 𝐷∗+𝜇− ҧ𝜈𝜇 using 
decay kinematics

o 𝜏− → 𝜋−𝜋+𝜋− 𝜋0 𝜈𝜏
• Potentially higher signal purity

• Must be normalized to hadronic B decays (reliant on 
external measurements to get R(D*)

•Common Challenges: missing neutrinos with (mostly) 
unconstrained momentum

• Don’t have full B momentum

• Large backgrounds from other partially-
reconstructed B decays



Distinguishing 𝑏 → 𝑐𝜏 → 𝜇𝜈𝜈 𝜈 from 𝑏 → 𝑐𝜇𝜈
oStarting in 𝜏 → 𝜇𝜈𝜈, have three key kinematic variables:
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ത𝐵0𝐷∗+

𝜇−

𝑚𝑚𝑖𝑠𝑠
2

𝐸𝜇
∗Alternately

𝑞2 = (𝑝𝐵−𝑝𝐷∗)
2

= 𝑚𝐵 − 𝐸𝐷∗
∗ 2

ഥ𝑩𝟎 → 𝑫∗+𝝉−ഥ𝝂 ഥ𝑩𝟎 → 𝑫∗+𝝁−ഥ𝝂

𝑚𝑚𝑖𝑠𝑠
2 > 0 𝑚𝑚𝑖𝑠𝑠

2 = 0

𝐸𝑙
∗ spectrum is soft 𝐸𝑙

∗ spectrum is hard

m𝜏
2 ≤ 𝑞2 ≤ 10.6 GeV2 0 ≤ 𝑞2 ≤ 10.6 GeV2

𝑞2 = 𝑝ℓ + 𝑝𝜈
2

= 𝑚𝑊∗
2



In a more perfect world…

oBy fully reconstructing the event, the missing energy (or alternately the 
signal B initial momentum) can be constrained and the missing mass 
directly computed

oBut at LHCb we lack the information needed to close the kinematics!
◦ Unknown hard interaction energy, many underlying event particles, etc…

◦ We know the direction of 𝑝𝐵, but not the magnitude… need a constraint!

21

Cartoon from M. Rotondo, CKM2016



Rest frame approximation

•Key observation: Distributions are broad to begin with – a well-behaved approximation will still preserve 
differences between signal, normalization and backgrounds

Take 𝛾𝛽𝑧 ത𝐵 = 𝛾𝛽𝑧 𝐷∗𝜇

⟹ 𝑝𝑧 ത𝐵 =
𝑚𝐵

𝑚 𝐷∗𝜇
𝑝𝑧 𝐷∗𝜇

•The problem of large nontrivial resolutions is by no means unique to us, and it should not be daunting
◦ See, e.g., neutron spectrometry

◦ If resolution/approximations in reconstruction are reliably simulated, then you can get away with a lot!
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𝜇

𝜏

MC Truth

Our 
Approximation

𝐸𝜇
∗ ΤMeV 𝑐𝑚𝑚𝑖𝑠𝑠

2 ΤGeV 𝑐2 2 𝑞2 ΤGeV 𝑐2 2

𝐸𝜇
∗ ΤMeV 𝑐𝑚𝑚𝑖𝑠𝑠

2 ΤGeV 𝑐2 2 𝑞2 ΤGeV 𝑐2 2

LHCb-PAPER-2015-025 supplementary



Fit
•Using rest frame approximation, construct 3D “template” histograms for 
each process contributing to 𝐷∗+𝜇−

◦ Signal, normalization, and partially reconstructed backgrounds use simulated events, 
other backgrounds use control data

◦ Templates are functions of any relevant model parameters via interpolation between 
histograms generated with different fixed values of those parameters

•These templates are then used as PDFs for a maximum likelihood fit to data
◦ ~Inclusive spectral unfolding in multiple dimensions

•-> distributions shown previously directly translate to one-dimensional 
projections of the 3D templates for signal and normalization 
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𝐸𝜇
∗ ( ΤMeV 𝑐)𝑚𝑚𝑖𝑠𝑠

2 ΤGeV 𝑐2 2 𝑞2 ΤGeV 𝑐2 2

LHCb-PAPER-2015-025 supplementary



Reducing partially reconstructed backgrounds
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Track IP

PV

Underlying
Event

oMake use of superb tracking system
◦ Scan over every reconstructed track and compare against 𝐷∗+𝜇− vertex

◦ Check for vertex quality with PV and SV, change in displacement of SV, 𝑝𝑇, alignment of 
track and 𝐷∗+𝜇− momenta

◦ Our equivalent tool to requiring no more reconstructed physics objects after signal and tag 
are selected

oEach track receives BDT score as “SV-like” (high) vs “PV-like” (low)
◦ Cut on most SV-like track below threshold: get signal sample enriched in exclusive 

decays. Rejects 70% of events with 1 additional slow pion
◦ Cut on most SV-like track(s) being above threshold: get control samples enriched in 

interesting backgrounds - 𝐵 → 𝐷∗+𝜋𝜇𝜈, 𝐵 → 𝐷∗+𝜋𝜋𝜇𝜈, 𝐵 → 𝐷∗+𝐻𝑐 → 𝜇𝜈𝑋′ 𝑋
(very analogous to high 𝐸𝐸𝐶𝐿 control regions in, e.g. 𝐵 → 𝜏𝜈)

SV



Other Major Tool: Control Samples
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ത𝐵0 → 𝐷∗+𝜇− ҧ𝜈𝜇 (normalization)

ത𝐵0 → 𝐷∗+𝜏− ҧ𝜈𝜏
(signal)

ത𝐵0 → 𝐷∗∗+𝜇− ҧ𝜈𝜇 + ത𝐵0 → 𝐷∗∗+𝜏− ҧ𝜈𝜏
ത𝐵− → 𝐷∗∗0𝜇− ҧ𝜈𝜇 + ത𝐵− → 𝐷∗∗0𝜏− ҧ𝜈𝜏
𝐷∗∗ → 𝐷∗+𝜋 (3 states each, 6 PDFs)

ത𝐵𝑠
0 → 𝐷𝑠

∗∗+𝜇− ҧ𝜈𝜇
𝐷𝑠
∗∗+ → 𝐷∗+𝐾𝑆

0, (2 states, 1 free param)

𝐵+,0 → ഥ𝐷∗∗𝜇+𝜈𝜇
ഥ𝐷∗∗ → 𝐷∗−𝜋𝜋, (cocktail)

combinatorial
ℎ → 𝜇

misidentification

ത𝐵 → 𝐷∗+𝐻𝑐 → 𝜇𝜈𝑋′ 𝑋
+ത𝐵 → 𝐷∗+𝐷𝑠

− → 𝜏− ҧ𝜈𝜏 𝑋

Control sample fits to constrain shapes

LHCb-PAPER-2015-025 supplementary

Corrections applied to double-charm
dalitz plots, form factors of semileptonic 
backgrounds (excited charm) measured



Other Major Tool: Control Samples
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ത𝐵0 → 𝐷∗+𝜇− ҧ𝜈𝜇 (normalization)

ത𝐵0 → 𝐷∗+𝜏− ҧ𝜈𝜏
(signal)

ത𝐵0 → 𝐷∗∗+𝜇− ҧ𝜈𝜇 + ത𝐵0 → 𝐷∗∗+𝜏− ҧ𝜈𝜏
ത𝐵− → 𝐷∗∗0𝜇− ҧ𝜈𝜇 + ത𝐵− → 𝐷∗∗0𝜏− ҧ𝜈𝜏
𝐷∗∗ → 𝐷∗+𝜋 (3 states each, 6 PDFs)

ത𝐵𝑠
0 → 𝐷𝑠

∗∗+𝜇− ҧ𝜈𝜇
𝐷𝑠
∗∗+ → 𝐷∗+𝐾𝑆

0, (2 states, 1 free param)

𝐵+,0 → ഥ𝐷∗∗𝜇+𝜈𝜇
ഥ𝐷∗∗ → 𝐷∗−𝜋𝜋, (cocktail)

combinatorial
ℎ → 𝜇

misidentification

ത𝐵 → 𝐷∗+𝐻𝑐 → 𝜇𝜈𝑋′ 𝑋
+ത𝐵 → 𝐷∗+𝐷𝑠

− → 𝜏− ҧ𝜈𝜏 𝑋

Control sample fits to constrain shapes

LHCb-PAPER-2015-025 supplementary

Johnathan Frakes
on simulated 𝐵

background samples
“out of the box”



LHCb result
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•3D fit to 𝑚𝑚𝑖𝑠𝑠
2 , 𝐸𝜇

∗, 𝑞2

•Result: 𝑅 𝐷∗ = 0.336 ± 0.027 ± 0.030

◦ (2.1 sigma from CLN prediction)

◦ First measurement of a 𝑏 → 𝑋𝜏𝜈 decay at a 
hadron collider

• Dominant systematics from MC statistical 
uncertainty and background from hadrons 
misidentified as muons

PRL 115 111803(2015)



ത𝐵0 → 𝐷∗+𝜏 ҧ𝜈 with 𝜏− → 𝜋−𝜋+𝜋− 𝜋0 𝜈

oThis signal mode is historically very challenging due to the large inclusive 
ത𝐵 → 𝐷∗+3𝜋𝑑𝑖𝑟𝑒𝑐𝑡𝑋 branching fraction (includes normalization mode)
◦ Size is 100x expected signal

oVery large boost yields a tertiary vertex and additional handles at LHCb
◦ Requiring 4𝜎 separation of vertices along Ƹ𝑧 removes 99.9% of non-flying 

background

◦ Signal efficiency is ~34%
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Reconstruction of Fit Variables
•Again, we make use of alignment of flight direction and total momentum, except 
now we have a tau vertex to play with!

◦ Know: 𝑝3𝜋, 𝑝𝐷∗ , 𝐵 flight vector from PV, 3𝜋 flight vector from 𝐷∗

◦ Using known 𝐵 and 𝜏 mass to solve results in 2 × 2-fold quadratic ambiguities

•Choose 𝜃, 𝜃′ such that the ambiguity vanishes

◦ Provides ≈ 10% resolution on 𝑞2

•2nd reconstruction hypothesis: assume no neutinos at B vertex, unknown mass 
neutral system at 3pi vertex – obtain estimate for mass m(3pi+N) which peaks for Ds 
bkgnd

• using strengths of detector to overcome difficulties of environment/final state!
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Controlling Ds backgrounds
• Largest background is from 𝐵 →
𝐷∗𝐷𝑠[→ 3𝜋𝑋]

◦ Train BDT to distinguish the 
two decays using (mainly) 3𝜋
dynamics

◦ BDT used both as selection 
and fit variable

•𝐷𝑠 decay simulation is 
untrustworthy at best (don’t 
blindly trust decay.dec!). 3 Step 
process to calibrate background 
simulation:

◦ Train BDT on “vanilla” 
(uncorrected) simulation 

◦ use to select pure 𝐷𝑠 sample 
◦ correct 𝐷𝑠 simulation 

modelling by comparison of 
BDT inputs in background-like 
region

◦ Apply corrections to 
background template in signal 
fit

30
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Fit
• 3D fit in 𝑞2, 𝜏 decay time (not shown), BDT

• Exclusive ത𝐵 → 𝐷∗+3𝜋𝑑𝑖𝑟𝑒𝑐𝑡 provides 
normalization for measurement

◦ Κ 𝐷∗ ≡
ℬ ഥ𝐵0→𝐷∗+𝜏−ഥ𝜈𝜏

ℬ ഥ𝐵0→𝐷∗+𝜋−𝜋+𝜋−

𝑅 𝐷∗ = 𝐾 𝐷∗ ×
ℬ ത𝐵0→𝐷∗+𝜋−𝜋+𝜋−

ℬ ത𝐵0→𝐷∗+𝜇−ഥ𝜈𝜏

• Result: 0.286 ± 0.019 ± 0.025 ± 0.021
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Next Steps for 
LHCb
HEAVY FLAVOR IN RUN3 AND BEYOND
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LFU Ratio prospects
•General prospects for increasing 
precision of core observables (𝑅(𝑋𝑐)) 
are relatively well-established

◦ Ultimate sensitivity depends on 
what systematics become limiting

◦ Large datasets -> large control 
samples -> most systematics can be 
reduced

•Right: projections if limiting 
systematics become combinatorial 
background shapes, PID efficiencies, 
data/MC corrections 

•Absolutely crucial that computing keep 
up with data (need simulation ~4x data 
to keep up)

◦ Raw power/architecture 
improvements?

◦ Improved FastMC? (systematics?)
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𝑏 → 𝑢𝜏𝜈
•𝑏 → 𝑢 semileptonics are challenging due to very 
large combinatoric backgrounds

◦ Low daughter multiplicity, 
no tertiary vertex

◦ One handle: rarer 𝑋𝑢 systems (𝑝, 𝐾 instead of 𝜋)

◦ Example: Existing LHCb result on |𝑉𝑢𝑏| in Λ𝑏
0 →

𝑝𝜇𝜈 is already systematics limited with just Run1

◦ External inputs dominate – form factors, Λ𝑐
+ →

𝑝𝐾𝜋

•Targets for LFU: 𝐵− → 𝑝 ҧ𝑝𝜏𝜈

◦ Expect O(1000) normalization in first search for 
this mode at LHCb, by Run5 could have similar 
stats to 2015 LHCb R(D*) measurement

◦ Many challenging partially reconstructed bkgds
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Farewell to a Superb Detector
oLHCb remains diverse and vibrant 
experimental collaboration during long 
shutdown:

◦ ~1400(!!!) members across 85 institutions in 
18 countries working on Run1&2 data, 
upgrade construction, upgrade software, 
planning for further future, etc.

oLHCb as we knew it has been disassembled to 
make room for the Phase-I upgrade detector

◦ Fast readout for real-time software decision-
making

◦ More granular subdetectors to cope with 
‘busier’ events

oPhotos: LHCbExperiment on Instagram
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LHCb Upgrade in a Nutshell
oCannot increase luminosity any further in Run2 
trigger scheme

◦ Fixed-bandwith hardware decisions limit output 
rate and only access limited event info 

◦ Increasingly strict requirements select *against* 
heavy-flavour events

oLHCb Upgrade Concept:
◦ Completely rebuilt detector readout to be 

synchronous with LHC beam crossings 
◦ Real-time analysis style event selection

◦ Fast event reconstruction with GPU technology
◦ Can identify candidate B hadrons and interesting 

tracks *before* making the decision!

oResult: Order-of-magnitude increase in dataset

oRequire significant increase in segmentation to 
deal with ~5 𝑝𝑝 collisions per event

◦ All new charged-particle trackers
◦ Re-optimized and rebuilt particle identification 

subdetectors

36
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Upgrade outside the nutshell
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Summary
oLHCb groups have been hard at work finding ways to move beyond the 
applications envisioned in the physics case and design work
◦ Many of the techniques have spiritual (if not direct) analogs in the B 

factories – we don’t work in a vacuum and neither do you!

oNot every possibility for Belle-II has been done already, nor possibly even 
imagined yet!
◦ Keep your eyes open and look for connections between your problems and 

others, you never know where a breakthrough will come from!
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Backup Slides
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Aside: Semileptonics with light leptons
oWith a single missing neutrino, there exists a very nice tool:

◦ 𝑚𝑐𝑜𝑟𝑟 = 𝑚𝑣𝑖𝑠
2 + 𝑝⊥

2 + |𝑝⊥|

◦ Signal peaks at B mass, shape well-described by MC, not 
very sensitive to form factors

oThis tool is surprisingly general however:
◦ Exactly equivalent to “transverse mass” variable used for 

energy frontier searches involving missing energy
◦ Also appears in some partial-reconstruction techniques with 

single missing neutral particles
◦ Used in LHCb inclusive triggering to find B decays with 

daughters below HLT tracking threshold and/or neutrals
◦ Good to keep in your toolbox!
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