DEEP DIVE INTO SEMILEPTONIC ANALYSES

Bob Kowalewski University of Victoria

Motivation

Why study semileptonic decays?

- Provide access to fundamental CKM parameters $|V_{cb}|$ and $|V_{ub}|$
- Probe charged weak *b* decays:
 - Allow tests of lepton universality
 - Allow tests of structure (pure V A or not?)
- Are more abundant (but less clean) than purely leptonic decays
- Are better understood theoretically than fully hadronic decays (but they're harder to reconstruct due to missing neutrino(s))

 $\left\langle X \left| \overline{b} \gamma^{\mu} q \right| B \right\rangle_{SM}$ $\left\langle X \left| \mathcal{O} \right| B \right\rangle_{NP?}$

SM \leftarrow Physics goals \rightarrow NP

- |V_{cb}|
 - Abundant $B \rightarrow X_c \ell \nu$ decay modes ($\approx 24\%$ of all B decays)
- |*V*_{*ub*}|
 - Rarer ($\approx 0.5\%$ of all B decays)
 - Large potential background from $b \rightarrow c$ transitions
- Form factors

- Lepton flavor universality: measure *e*, μ, τ decay rates separately
- Look for contributions that aren't pure V A

Lepton flavor universality tests

- A fundamental assumption in the SM is that spin-1 bosons couple *only* to charge; for flavor-changing interactions this means weak isospin
- As a result, e, μ and τ decay rate differences arise only due to phase space \rightarrow the SM makes precise predictions about their ratios
- Ratios like $\mathcal{R}_D = \frac{\Gamma(B \to D \tau \nu)}{\Gamma(B \to D \ell \nu)}$ provide stringent tests, since uncertainties from form factors and experimental sources partially cancel in the ratio

- Other quantities (e.g. τ polarization) are also useful probes
- Much more detail in RMP article:

"Semitauonic b-hadron decays: A lepton flavor universality laboratory", F. Bernlochner, M. F. Sevilla, D. J. Robinson, G. Wormser, [arXiv: 2101.08326]

High priority measurements for Belle II

- Semi-tauonic decays $(B \rightarrow X\tau\nu)$ as measured by BaBar, Belle and LHCb are in some tension with SM expectations
 - we must establish whether this is due to "New Physics" or "Nuisance Parameters"
- And there's our friendly competition with LHCb...

- Inclusive/exclusive puzzle:
 - $|V_{cb}|$ and $|V_{ub}|$ can be determined using *inclusive* or *exclusive* decays (the methods are complementary); the results don't agree well
- Missing modes: The measured exclusive modes do not saturate the inclusive BF (the gap is $\sim 1.2 \pm 0.4\%$); how does what is missing impact important measurements?

Inclusive and exclusive SL decays

Inclusive $B \to X_q \ell \nu$

- Theory Relies on Heavy Quark Expansion (OPE), a systematic expansion in Λ_{OCD}/m_b ; non-perturbative coefficients can be determined from data (via fit to moments in $E_{e}, m_{X}, ...)$
- Measurement allows for unreconstructed "X" and represents a sum over all modes that involve the reconstructed particles
- E.g., $\overline{B} \to D(X)\ell\nu = \sum_{i} \overline{B} \to DX_{i}\ell\nu$ (" X_{i} ") can be null, a pion, a photon, two pions, etc.)

Theory uncertainties

Exclusive $B \rightarrow H\ell\nu$

arise from different • Theory requires form factors $F(q^2)$; shape can in principle be measured but normalization must be come from theory (LQCD)

> • Measure a specific decay (or simultaneously measure multiple decays); everything else is treated as background

• E.g., $\overline{B}^0 \to D^{*+} \ell^- \nu$, or $B^- \to \pi^0 \ell^- \nu$

The basics

Electrons and muons in Belle II

Electrons

- High identification efficiency and low misID background down to $\approx 0.3 \; \mbox{GeV}$
- Affected by radiative corrections (in production/decay) and bremsstrahlung (in detector). Brem corrections are helpful but it is essential to quantify the *uncertainty* due to brems

Muons

• High identification efficiency and low misID above ≈ 1 GeV; large π/K misID at low p

Sources of electrons and muon candidates

- Prompt leptons from weak *b*, *c* hadron decay
- Backgrounds from hadron mis-ID, detector interactions
- Production cross-sections/BFs at 10.58 GeV:

	$b\overline{b}$	сē	$q\bar{q} (q = u, d, s)$
$\sigma(e^+e^- \to q\bar{q})$	1.1 nb	1.3 nb	2.0 nb
$BF\left(H_q \to X\ell\nu\right)$	0.11	(0.07—0.18)	(only fakes)

- Leptons from $B \to J/\psi \to \ell^+ \ell^-$ (~0.013 ℓ/B) matter for $b \to u \ell v$ studies
- Event shapes help with continuum suppression

Electrons and muons at $\Upsilon(4S)$

- In CM, *B* mesons are nearly at rest; the decay products are isotropic and each *B* decays independently
- Both B and charm weak decays have significant SL BFs; charmonium contributes less, but can give high p leptons
- Leptons from $B \to \ell$ are harder than cascades $B \to D/\tau \to \ell$
- Charge correlations: $b \to \ell^-$ but $b \to c/\tau \to \ell^+$ and $b \to \bar{c} \to \ell^-$; primary leptons tag b (and B) flavor
- Real leptons in continuum come primarily from $c\bar{c}$, but other $q\bar{q}$ are a source of fake leptons (mis-ID)
- In CM the charm mesons are boosted leading to more collimation (jet-like)

Electrons spectrum from $B\overline{B}$ and $q\overline{q}$

- Off-resonance data (scaled for luminosity and cross-section differences) provides an excellent control sample for modeling the continuum background
- $B \to X_c \ell \nu$ decays dominate over continuum and over $B \to X_u \ell \nu$: BF $(B \to X_c \ell \nu) \sim 50 * BF(B \to X_u \ell \nu)$
- $B \to X_u \ell \nu$ can be measured in regions ($p_\ell \gtrsim 2.4$ GeV, $q^2 > 11.7$ GeV²) forbidden to $B \to X_c \ell \nu$
- Continuum background is also significant for $B \rightarrow X_u \ell \nu$ decays (note region around p = 2.5 GeV where continuum has $\sim 10^5$ events/bin and $B \rightarrow X_u \ell \nu$ has $\sim 10^4$)
- Many analyses use dedicated continuum suppression methods (often MVA)

Measurement strategies

Untagged

- High efficiency 👍
- Weak/no kinematic constraints 👎
- Kinematic acceptance is limited by backgrounds (details depend on mode) ⁺
- Large background from $e^+e^- \rightarrow q \bar{q}$
- Due to backgrounds, only cleanest decay modes (e.g. $D^+ \rightarrow K^- \pi^+ \pi^+$) are used

B-Tagged

- Low overall efficiency (including tag)
- Strong kinematic constraints for 1
 u modes \blacklozenge
- Kinematic acceptance usually better than untagged
- Other complications will be discussed later

Missing neutrinos

If only one neutrino is missing in the event, kinematic constraints are useful. If you have >1 missing particle, the kinematics are not constrained

• For hadronic tags

 $p_{miss} = p_{e^+e^-} - \sum_{j=1}^{N_{obs}} p_j$ so $U \equiv E_{miss} - |\vec{p}_{miss}|$ should be $\approx 0 \ (\sigma_U \sim 40 \text{MeV})$

Alternatively, $m_{miss}^2 = U(E_{miss} + |\vec{p}_{miss}|),$ but this mixes resolution and physics

 For untagged analyses or semileptonic tags^[*],

$$\cos \theta_{BY} \equiv \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|\vec{p}_B^*||\vec{p}_Y^*|}$$

lies in [-1,1] for $B \rightarrow Y \ell \nu$ decays. Missing particles (e.g. slow pions) push this to $\sim [-3,1]$, but still allow useful discrimination

^[*] One can define another variable in events where signal and tag each have one missing neutrino; I leave it as an exercise

Kinematics exercises

The "traditional" variable, $\cos \theta_{BY} \equiv \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|\vec{p}_B^*||\vec{p}_Y^*|}$, is a calculated angle in the CM frame (we should probably call it $\cos \theta_{BY}^*$). Since the *B* mesons are not at rest, the $\cos \theta_{BY}$ distribution has more entries near +1 than near -1 (the *Y* is boosted forward)

1. Show that a related variable gives the angle in the *rest frame of the decaying B meson*:

$$\cos \theta_{BY}^{B} = \frac{2E_{Y}^{*} - E_{B}^{*}(1+r^{2})}{|\vec{p}_{B}^{*}|(1-r^{2})}$$

 $\left(r \equiv \frac{m_Y}{m_B}\right)$. This quantity is distributed uniformly on [-1,1] for true $B \to Y\nu$ decays

2. Show that when both *B* mesons from $\Upsilon(4S)$ decay semileptonically, the following must be satisfied (γ is the angle between Y_1 and Y_2):

$$\cos^2 \phi_B = \frac{\cos^2 \theta_{BY_1} + \cos^2 \theta_{BY_2} + 2\cos \theta_{BY_1} \cos \theta_{BY_2} \cos \gamma}{\sin^2 \gamma} \epsilon [0,1]$$

Exclusive decay landscape

- Measure branching fractions or ratios of BFs; use to determine $|V_{qb}|$
- Measure form factors as function of q^2 (with good resolution) and angles
- Where possible, measure all the relevant kinematic variables over the full phase space
- Deal with feed-down or feed-across from related decay modes; these can be large effects
- For details on theory, see. Review of Modern Physics article by F. Bernlochner, M. F. Sevilla, D. J. Robinson, G. Wormser, <u>arXiv: 2101.08326</u>

$B \rightarrow D\ell\nu$ analyses

• Fully differential decay rate depends only on q^2 , or $w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$, or

 $z(q^{2}) = \frac{\sqrt{t_{+}} - q^{2} - \sqrt{t_{+}} - t_{0}}{\sqrt{t_{+}} - q^{2} + \sqrt{t_{+}} - t_{0}}}$ (t₊ and t₀ are constants)

FF parameterized as function of w ∈ [1,1.6] (or z ∈ [-0.032,0.032]).
 BGL form based on analyticity and unitarity is commonly used:

$$f_{+}(z) = \frac{1}{P_{+}(z)\phi_{+}(z)} \sum_{n=0}^{N} a_{+,n} z^{n}$$

- Lattice QCD calculations provide O(1%) precision at large q^2 and also provide shape information; $|V_{cb}|$ and FF parameter determination done with simultaneous fit to lattice+experiment
- Challenge: large feed-down from $B \rightarrow D^* \ell \nu$ decays with missing π, γ
- A second FF (f_0) arises for massive leptons (au)
- To improve resolution, kinematic fits are used in tagged analyses and the "diamond frame" is used for q^2 in untagged analyses

$B \rightarrow D^* \ell \nu$ analyses

- Fully differential rate depends on angles (θ_ℓ, θ_V, χ) and q² or w or z; there are three form factors for light leptons, parameterized in different ways ({A₁, A₂, V}; {f, F₁, g}; ...)
- Measurement of the full 4D experimental rate requires high stats and good modeling of acceptance
- Again, $\ell = \tau$ again brings in an additional FF
- Lattice QCD provides O(1%) predictions at large q^2 and shape information; the $D^*: D: \pi$ coupling makes this calculation more challenging than for $B \rightarrow D$
- Combined expt+lattice fits are used to determine $\left|V_{cb}\right|$ and the FF parameters

 Heavy Quark Effective Theory offers a useful framework, relating all FFs to a universal "Isgur-Wise" function, but HQET constraints are no longer needed to interpret data

$B \rightarrow \pi \ell \nu$ analyses

- Fully differential decay rate depends only on q^2
- Lattice calculations provide ~3% precision for $q^2 > 16~{\rm GeV^2}$
- Challenge: untagged analyses have large backgrounds from continuum and from feed-down ($B \to \rho \ell \nu$) decays
- Tagged analyses are much cleaner but have low yields (tag efficiency times ${\rm BF}(B\to\pi\ell\nu)<10^{-6})$
- While untagged analyses have large background, especially at high q^2 (where $|\vec{p}_{\pi}|$ is small), they still dominate current $|V_{ub}|$ determinations (this will be true until we have many ab⁻¹)

Inclusive decay landscape

For lack of time I'm not going to talk much about inclusive decays.

- The semileptonic $B \rightarrow X_c \ell \nu$ BF is a crucial element in determining $|V_{cb}|$
- Moments of the E_e , m_h and q^2 distributions in $B \to X_c \ell \nu$ decays are important inputs in determining coefficients of the Heavy Quark Expansion, on which the determination of $|V_{cb}|$ is based
- The semileptonic $B \to X_u \ell v$ BF has a theoretically robust relation to $|V_{ub}|$; unfortunately, the full BF is not easily measure, and partial BFs in restricted regions of phase space bring in larger theory uncertainties
- These topics are discussed in many places, including in the PDG review article on semileptonic B decays, <u>https://pdg.lbl.gov/2021/web/viewer.html?file=https://pdg.lbl.gov/2021/reviews/rpp2020-rev-vcb-vub.pdf</u>

Untagged analyses - examples

Global fit to untagged $B \rightarrow D\ell^-\nu(X)$

- High statistics: about 8000 $D\ell^-$ pairs / fb⁻¹
- Three independent variables for B decays: p_D , p_ℓ , $\cos \theta_{BY}$
- *W* helicity state populations differ for $B \rightarrow D$ and $B \rightarrow D^*$ transitions, leading to different p_D and p_ℓ distributions; $\cos \theta_{BY}$ is also shifted. Decays to heavier X_c states shift p_D , p_ℓ and $\cos \theta_{BY}$ to still lower values
- Global fit to $B \to D\ell^- \nu X$ can determine BFs and FF slopes for both $B \to D\ell^- \nu$ and $B \to D^*\ell^- \nu$ without ever reconstructing soft π^+/π^0
- Leading uncertainties arise from modeling of heavier X_c states, D decay BFs and detector modeling
- 2009 measurement (207 fb⁻¹) still gives world-leading precision on $BF(B^- \rightarrow D^{*0}\ell^-\nu)$ (4%) and $BF(B^- \rightarrow D^0\ell^-\nu)$ (5.5%)

Tagged analyses – which tag?

- Tagged analysis strategy:
 - Require that tag+signal decays use *all* good tracks (*N*^{trk}_{Extra}=0);
 - Measure how much neutral calorimeter activity is not part of either tag or signal (E_{Extra} , a.k.a. E_{ECL})

Hadronic tags

- Tag side fully reconstructed we know p_{tag} ($\therefore p_{miss}$) and calculate $U = E_{miss} - |\vec{p}_{miss}|$
- For high efficiency, we include tag decays with high multiplicity \Rightarrow lots of activity in the detector, which increases E_{Extra}
- High multiplicity tag modes are also less clean ⇒ many candidates per event

Semileptonic tags

- Tag side has neutrino we don't know $ec{p}_{B_{tag}}$
- Less activity in the detector from visible tagside particles (helps with E_{Extra})
- Lower multiplicity and visible energy compensates for weaker kinematic constraint (use $\cos \theta_{BY}$ to select tag)

B tagging: the fine print

Tagging (Full Event Interpretation in Belle II) is powerful but has challenges

- Purity is the "best" tag the true one?
 - The answer depends on the signal side decay mode and multiplicity
 - Unfortunately, the overall tag+signal efficiency depends on purity: if you choose the wrong tag you can fail to reconstruct the signal from the ROE ("rest of event")
 - The hardest case is for analyses where the ROE is unconstrained (e.g. when we try to measure the X_c system in $B \rightarrow X_c \ell \nu$)

- Calibration
 - B decays involve millions of individual modes ⇒
 EVTGEN does not agree with data when we sum over reconstructed B decay chains
 - The modeling of the detector is also imperfect
 - We therefore "calibrate" (compare data with MC) to correct the simulated FEI efficiency; these calibration factors are large (~30%)
 - Unfortunately, we have very few high-stats calibration channels and the correction differs (in principle) for different signal modes

Tagged analyses - examples

$B \rightarrow X_u \ell \nu$ with hadronic tag

Belle paper (PhysRevD.88.032005) is current state-of-the-art

- Measures many modes: $B \to h\ell\nu$ with $h = \pi^+, \pi^0, \rho^+, \rho^0, \omega$ Recall from isospin $BF(B^0 \to h^+\ell\nu) = 2 \times BF(B^- \to h^0\ell\nu)$
- Require tag+signal topology, fit M_{miss}^2 spectra
- Largest systematic uncertainty: tag calibration (4.5%); cross-feed from other $X_u \ell v$ modes also important for $\rho^+ \ell v$
- Cleanliness of $B \rightarrow \rho \ell \nu$ allows comparison of $\pi^+ \pi^- \ell \nu$ and $\pi^+ \pi^0 \ell \nu$ composition with simulation (see plot); this is impossible in untagged analyses

BaBar $R(D^{(*)})$ with hadronic tag

BaBar 2012 result (arXiv:1303.0571)

- Fit to m^2_{miss} and p_ℓ to both signal $(B \to D^{(*)}\tau\nu)$ and normalization $(B \to D^{(*)}\ell\nu)$ modes
- Use $B \rightarrow D^{(*)}\pi^0 \ell \nu$ mode to control D^{**} (i.e. highermass X_c states) systematics
- Leading systematics from D^{**} modeling, other background and MC statistics (56 2D-templates needed for fit...)

Belle $R(D^{(*)})$ with semileptonic tag

- <u>arXiv:1910.05864</u> highest precision to date
- Semileptonic $B \to D^{(*)} \ell \nu$ tags and leptonic decays $\tau \to \ell \nu \overline{\nu}$ are selected
- Tag selected based on tag BDT and $\cos heta_{BY}$
- No additional tracks allowed; E_{ECL} measured
- MVA used to select signal region; graph insets show selected regions
- Syserrs: PDF shapes (sig and bkg modeling), feed-down $(D^* \rightarrow D\pi)$, relative efficiency factors (sig/norm)

Systematic uncertainties

Experimental uncertainties

The usual suspects:

- Particle identification
- Bremsstrahlung
- Tracking efficiency and resolution
- Photon efficiency, resolution and background
- Backgrounds from the accelerator and interactions in detector material (E_{extra})

Theoretical/external uncertainties

- Uncertainty on BF and FF for particles in the signal decay chain (e.g. D meson decays) and for decay modes that contribute to backgrounds
- Simulation of semileptonic decays
 - Modelling form factors (and their uncertainty) for exclusive decays
 - Filling the gap between known exclusive modes and the inclusive semileptonic BF (requires assumptions about resonances and decay modes that have never been measured)
 - Modelling inclusive $b \rightarrow u \ell \nu$ decays
 - Combining inclusive and exclusive $B \rightarrow X_u \ell \nu$ samples
 - Modeling radiative corrections

Systematic uncertainties – example 1

- Systematic uncertainties on inclusive SL BF [<u>BELLE2-</u> <u>CONF-PH-2021-012</u>]
- The BF is determined in a template fit to $b \rightarrow c\ell \nu$, other $B\overline{B} \ (b \rightarrow u\ell \nu, b \rightarrow c(\tau) \rightarrow \ell)$, continuum, fakes
- BF determined as BF($B \rightarrow X_c \ell \nu$) = $(9.75 \pm 0.03 \pm 0.47)\%$
- Even on 62.8fb⁻¹ this measurement is already completely dominated by systematic uncertainties (world's best measurement has 2% uncertainty)
- Shape of dominant $b \rightarrow c \ell \nu$ component is leading uncertainty

- Lepton ID (eff, fakes) significant
- Off-res uncertainty taken as difference between fixing and floating continuum normalization

	Relative unce	rtainty [%]
Contribution	Electron mode	Muon mode
Tracking	0.69	0.69
$N_{Bar{B}}$	1.1	1.1
Lepton ID corrections	1.64	2.33
$f_0/f_+, B$ lifetime	1.2	1.2
$B \to X_c \ell \nu_\ell$ branching fractions	2.65	2.15
$B \to X_c \ell \nu_\ell$ form factors	1.11	1.11
$B\bar{B}$ background model	0.24	0.34
Off-resonance data model	0.34	2.91
Sum	3.77	4.79

Systematic uncertainties – example 2

- Systematic uncertainties on exclusive BF for $\bar{B}^0 \to \pi^+ \ell^- \nu$ [Belle2-CONF-PH-2021-013]
- Hadronic tagging (FEI) used on $62.8 \mathrm{fb}^{-1}$
- Major uncertainty is FEI calibration
- Lepton ID and tracking efficiency are next
- Determining the number of $B^0 \overline{B}{}^0$ events produced gives ~1.6% uncertainty

% of $\Delta \mathcal{B}_i(B^0 \to \pi^- \ell^+ \nu_\ell)$			
$0 \le q^2 < 8 \text{GeV}^2/c^4$	$8 \le q^2 < 16 { m GeV}^2/c^4$ 16	$\leq q^2 \leq 26.4 \mathrm{GeV}^2/c^4$	
	1.2		
	2.8		
	1.1	_	
	1.4		
0.8	0.8	0.9	
1.7	1.3	1.6	
0.7	0.6	0.6	
4.0	3.9	4.0	
	$0 \le q^2 < 8 \text{GeV}^2/c^4$ 0.8 1.7 0.7 4.0		

From the paper:

"For $B \rightarrow \pi l \nu$ decays, the systematic uncertainties from the modeling of $B \rightarrow X_u l \nu$ are expected to be small compared to other systematic uncertainties."

This will not be the case for other modes, such as $B \rightarrow \rho l \nu$

Recommendation for Belle II semileptonic analyses

- Both physics and experimental factors are common amongst many individual decay modes and analyses – this suggests grouping channels together into larger analyses to get the most from our data
- Good examples are the BaBar global fit to $B \to D^{(*)} \ell \nu(X)$ and Belle $B \to X_u \ell \nu$ hadronic tag analyses discussed here
- Another good example of such a multi-channel analysis is the recent Belle result circulated internally by Frank Meier (BN1569); it's a *lot* of work but has impact

Summary

- Semileptonic decays offer a valuable tool for testing and further quantifying the SM and in looking for new physics
- Many semileptonic analyses are systematics limited (and most of those that aren't now will be in a few years) → good ideas and hard work needed to make progress
- Grouping related channels together brings real benefits but may require tighter coordination amongst analysts (bigger teams)
- Belle II has great potential in this area

Some useful references

• Much more detail on tauonic decays and the theory of exclusive semileptonic decays in RMP article

"Semitauonic b-hadron decays: A lepton flavor universality laboratory,", F. Bernlochner, M. F. Sevilla, D. J. Robinson, G. Wormser, [arXiv: 2101.08326]

- Inclusive semileptonic decays are discussed in the PDG review article
 <u>https://pdg.lbl.gov/2021/web/viewer.html?file=https://pdg.lbl.gov/2021/reviews/rpp2020-rev-vcb-vub.pdf</u>
- References on B tagging (FEI) <u>https://confluence.desy.de/pages/viewpage.action?pageId=35004501</u>
- References on efficiency (tracking, photon, PID) determination <u>https://confluence.desy.de/display/BI/Physics+Performance+Webhome</u>

Modeling charmless semileptonic B decays

- Low-lying resonances are modelled using FFs, BFs
- Higher mass contributions (by rate the majority) are generated using an inclusive quarklevel model followed by hadronization
- These two very different samples must be mixed together
 - Preserving the BFs and FFs of resonant states
 - Trying to maintain the overall kinematics (q^2, E_ℓ, M_{X_u}) of inclusive sample
- Apart from low-multiplicity modes (e.g. 2 pions) we don't have good tests of whether this modeling provides a good description of reality

Using off-peak data to model continuum

The modeling of fragmentation and hadronization at these low energies is far from perfect; this motivates collecting an **experimental control sample** with similar $e^+e^- \rightarrow q\bar{q}$ production but no $B\bar{B}$ production.

- The off-peak sample will always be statistically limited (luminosity ratio $\frac{\mathcal{L}_{on}}{\mathcal{L}_{off}} \sim 15$)
- Annihilation cross-section falls as 1/s; need to scale off-peak by $\frac{s_{off}}{s_{or}} \sim 0.99$
- Momenta of particles must also be scaled, but not just by $\sqrt{\frac{s_{on}}{s_{off}}}$, since multiplicity also changes; need to simulate $e^+e^- \rightarrow q\bar{q}$ at both s_{on} and s_{off} to gauge the impact

$B \rightarrow Xev$ (untagged) for $|V_{ub}|$

- High-statistics *e* spectrum; event-shape-based continuum suppression; simultaneous fit to on-peak and off-peak data. Fit for $0.8 < E_e < 2.7$ GeV determines continuum and normalizations for $6 B \rightarrow X_c ev$ modes and a $B \rightarrow X_u ev$ model
- Systematic uncertainties: modeling (FFs, higher resonances) of $B \rightarrow X_c e \nu$, electron ID/misID, radiative corrections, modeling of $B \rightarrow X_u e \nu$
- Experimental sensitivity only for $E_e \gtrsim 2.1$ GeV; attempts to determine the partial BF for lower E_e depend sensitively on the $B \rightarrow X_u ev$ model assumed
- To extract $|V_{ub}|$ one needs a theory model for $\Delta\Gamma = \int_{E>E_0} \frac{d\Gamma}{dE}$ to compare with the *corresponding* partial BF Δ B

