

Belle II Energy Scan Overview

Dec 03, 2021

Bryan Fulsom (PNNL)

2021 Belle II Physics Week

PNNL is operated by Battelle for the U.S. Department of Energy

Presentation Overview

- What was the energy scan?
 - For 19 days in November, SuperKEKB and Belle II collected data at four center-of-mass energy points above the usual $\Upsilon(4S)$ resonance
- Why did we do it?
 - Review of quarkonium physics
 - Importance of these new energy points
- What happened during the energy scan?
- How do we analyze the data? / What do we do next?

What is quarkonium?

- Bound state of heavy quark-antiquark pair
- 1974: Discovery of J/ ψ (c \overline{c}), evidence of charm/quark model
- 1977: Discovery of Υ (bb)

Energy Scan Overview / Bryan FULSOM (PNNL) / Belle II Physics Week / 2021.12.03

3

Theoretical Considerations

- Heavy quark mass \rightarrow non-relativistic bound state
- Analogous to positronium (e⁺e⁻)
- NRQCD potential based on one gluon exchange:

$$\begin{split} V(r) &\sim \frac{-4}{3} \frac{\alpha_s}{r} \\ V_{spin}(r) &= \left(\frac{1}{2m_1^2} \vec{L} \cdot \vec{S_1} + \frac{1}{2m_2^2} \vec{L} \cdot \vec{S_2} \right) \frac{1}{r} \frac{d}{dr} \left(V(r) + 2V_1(r) \right) \\ &\quad + \frac{1}{m_1 m_2} \vec{L} \cdot (\vec{S_1} + \vec{S_2}) \frac{1}{r} \frac{dV_2(r)}{dr} \\ &\quad + \frac{1}{m_1 m_2} (\hat{r} \cdot \vec{S_1} \ \hat{r} \cdot \vec{S_2} - \frac{1}{3} \vec{S_1} \cdot \vec{S_2}) V_3(r) + \frac{1}{3m_1 m_2} \vec{S_1} \cdot \vec{S_2} \ V_4(r) \end{split}$$
 Fine splitting

- Modern descriptions: EFT and lattice QCD
- Predictions: mass, width, J^{PC}, production, decay

5000

4750

4500

4000

3750

3500

3250

3000

2750

2500

(MeV/c²) 10800 (MeV/c²)

10600

10400

10200

10000

9800

9600

9400

9200

0-

Ma

Y(5S)

[∃]Y(1S)

splitting

¥ 4250

(MeV/c²)

Reality Check

Pacific Northwest

Energy Scan Overview / Bryan FULSOM (PNNL) / Belle II Physics Week / 2021.12.03

5

Interpreting new forms of matter

- Hadronic Molecules
 - Weakly bound state of mesons/baryons
- Tetraquarks/Pentaquarks
 - Di-quarks bound directly by strong force
- Other exotica
 - Hybrids: quarkonium with bound excited gluon
 - Hadroquarkonium: qq-light hadron interaction
- "Nothing special"
 - Kinematic effects / standard quarkonium
- Lattice QCD
 - Challenging calculation, but some progress underway

It is becoming increasingly clear that no single theoretical paradigm explains all > 40 heavy-quark exotics

diquark-diantiquark qq-gluon"hybrid" y

quarkonium

X3872: D⁰D⁰* "molecule"

Ann. Rev. Part. Sci. 58 (2008) 51

How do we study quarkonium experimentally? **Production Mechanisms**

Multiple methods to produce quarkonium/exotics at Belle II

- Production mode provides important information (e.g. J^{PC}, type)
- Several of these are unique to e⁺e⁻ colliders

7

How do we study quarkonium experimentally? **Decay Modes**

- Search for transitions between states
 - Radiative (γ) and hadronic ($\pi\pi$, π^0 , η , ...)
 - Governed by selection rules
- Below-threshold
 - $ee/\mu\mu$: low rate but clean, ψ/Υ states
 - hadronic: low rate/efficiency for N particles
- Above-threshold
 - Strong decays to DD/BB dominate

B-Factories Legacy

e.g.: "The Physics of the B Factories", EPJC 74, 3026 (2014)

- 1999 ~ 2010 : BaBar (SLAC) & Belle (KEK)
- CKM / CPV in B decays
- Hints for NP in rare processes
- Discovery of "XYZ" states

9

- Several charmonium-like states found at Belle and Babar (also BESIII, LHCb)
- Opened the door to a new era of discoveries

Discoveries in the Bottomonium System

- The B-Factories extended their physics programs with non- $\Upsilon(4S)$ data
 - e.g.: BaBar Υ (3S) for discovery of $\eta_{\rm b}$ (1S) and evidence for $h_{\rm b}$ (1P)
 - e.g.: Belle $\Upsilon(5S)$ for B_s physics and discovery of h_b(1P,2P), $\eta_b(2S)$
 - Observation of "XYZ" states in bottom sector: $Y_{b}(10753)$, $Z_{b}^{\pm}(10610, 10650)$

• KEKB/Belle collected energy scan data (~1fb⁻¹) at several points up to ~11 GeV

Energy Scan Overview / Bryan FULSOM (PNNL) / Belle II Physics Week / 2021.12.03

 $\Upsilon(6S) \rightarrow \pi^{\mp}[Z_b^{\pm} \rightarrow \pi^{\pm}h_b]$

A Question of Beam Energy

• Which energies? What can we do? What can we learn?

Energy Scan Overview / Bryan FULSOM (PNNL) / Belle II Physics Week / 2021.12.03

What's special about 10.75 GeV?

• Recent analysis of $\pi^+\pi^-\Upsilon(\ell^+\ell^-)$ transitions

Published for SISSA by D Springer

RECEIVED: July 11, 2019 ACCEPTED: October 11, 2019 PUBLISHED: October 22, 2019

Observation of a new structure near 10.75 GeV in the energy dependence of the $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ (n = 1, 2, 3) cross sections

The BELLE collaboration

R. Mizuk, 43,54 A. Bondar, 3,65 I. Adachi, 16,12 H. Aihara, 85 D.M. Asner, 2 ...

What's special about 10.75 GeV?

- Recent analysis of $\pi^+\pi^-\Upsilon(\ell^+\ell^-)$ transitions
- Results
 - Scan points: ~1 fb⁻¹ each
 - 1 point "on-peak"
 - 2-3 points in the region of interest
 - Total significance: 5.2σ

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma \ ({\rm MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0}_{-6.8}{}^{+0.7}_{-1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

Y_b(10753): Further Evidence?

- Independent analysis
 - Refit of Belle + BaBar energy scans
 - Evidence for state in interference

Parameter	Y(10750)	$\Upsilon(5S)$	$\Upsilon(6S)$
Mass/(MeV/ c^2)	10761 ± 2	10882 ± 1	11001 ± 1
Width/MeV	48.5 ± 3.0	49.5 ± 1.5	35.1 ± 1.2

15

Why is the Y_b(10753) important?

- Uncertain nature
 - Molecular interpretation? Does not coincide with a threshold...
 - No clear conventional bb candidate
 - Potential tetraquark?

Big picture: relationship to puzzles in XYZ/charmonium system

Conventional interpretations:

Ali, Maiani, Parkhomenko & Wang, PLB 802, 135217 (2020) Bicudo, Cardoso & Wagner, arXiv:2008.05605 (2020)

Chen, Zhang & He, PRD 101, 014020 (2020) Liang, Ikeno & Oset, PLB 803, 135340 (2020)

Some Key Theoretical Predictions

• BB:BB*:B*B* ratios predicted by almost all models

PLB 803, 135340 (2020)

• BF(Y_b(10753) $\rightarrow \omega \eta_b$ (1S)) may be large for tetraquark hypothesis

CPC 43, 123102 (2019)

• Tetraquark $M(\pi\pi)$ shape prediction

PLB 802, 135217 (2020)

Input from Belle: BB:BB*:B*B*

- Fit to m_{BC} for B mesons reconstructed with FEI

- Lineshape fit inconclusive
- Require 3-4 additional points

Input from Belle: $\pi^+\pi^-\pi^0\chi_{b1,2}$ (1P) Decays

- Observation of $\Upsilon(6S) \rightarrow \pi^+ \pi^- \pi^0 \chi_{b1,2}(1P)[\gamma \Upsilon(1S)]$ decays
 - ω and $\pi^+\pi^-\pi^\circ$ components combined
 - Cannot distinguish $\chi_{b1,2}(1P)$
- Low statistics at other points
- No clear interpretation
- Need more data and energies

PRD 98 091102 (2018)

Input from Belle: Dalitz analysis

Insufficient data: need greater statistics to populate Dalitz plot

Energy Scan Overview / Bryan FULSOM (PNNL) / Belle II Physics Week / 2021.12.03

20

Energy Scan Decisions

- Considerations
 - Potential for early physics impact by Belle II
 - Limited luminosity requirement (O(15/fb))
 - Y(6S) requires accelerator infrastructure upgrade
 - Collaboration with SuperKEKB accelerator group scheduling
- Proposed near-term non- $\Upsilon(4S)$ plans
 - 10.751 GeV (10 fb⁻¹): to study cross section enhancements
 - 10.657, 10.706, 10.810 (1+2+3 fb⁻¹): additional points for other decays
 - 11 GeV (30+ fb⁻¹): to study Υ(6S) on-peak Post-upgrade

Energy Scan Data Collection

• Energy scan took place Nov. 10 – 29, 2021 (JST)

Energy Scan Steps in Context

- Unique points between previous Belle energies
- Higher statistics (~2-10x) to confirm past measurements and improve fits

All points ~1/fb except these (~20+/fb)

Energy Scan Step Summary

- Use $M(\mu\mu)$ to estimate beam energy
- Caveats:
 - Radiative effects (μμγ)
 - Online conditions DB
 - Calibration/PID/etc.

0.03

0.025

• Will re-measure offline

Beam energy determination (Work in progress)

- BaBar energy scan: $M(\mu\mu) \sim 21$ MeV bias corrected to $\Upsilon(3S)$ data
- Belle $\pi\pi\Upsilon(pS)$: ~9 MeV bias, M(µµ) and m_{RFC}($\pi\pi$) from $\Upsilon(5S)$ data

Energy Scan Overview / Bryan FULSOM (PNNL) / Belle II Physics Week / 2021.12.03

PRL 102 012001 (2019) JHEP 10 (2019) 220

Inclusive vs. Exclusive Analysis

- Inclusive: reconstruct only part of the event ("top down")
 - E.g.: $e^+e^- \rightarrow \pi^+\pi^- X$
 - E.g.: $m_X = m_{\text{miss/REC}} = \text{sqrt}[(p_{ee} p_{\pi\pi})^2]$
- Potential advantages:
 - Large statistics
 - Better resolution
 - Do not need to reconstruct X
- Potential disadvantages:
 - High background
 - Combinatorics
 - Other peaking decays

h_b(1P) DECAY MODES

Mode

Fraction (Γ_i/Γ)

 $\Gamma_1 \eta_b(1S) \gamma (52^{+6}_{-5}) \%$

$\eta_b(1S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
「 ₁	hadrons	seen
2	$3h^{-}_{,3h^{-}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	not seen
Г3	$2h^+2h^-$	not seen
Γ4	$4h^{+}4h^{-}$	not seen
Г ₅	$\gamma \gamma$	not seen
Г ₆	$\mu^+\mu^-$	$< 9 \times 10^{-3}$
「 ₇	$\tau^+ \tau^-$	<8 %

Inclusive vs. Exclusive Analysis

- **Exclusive**: reconstruct a complete final state ("bottom-up")
 - E.g.: $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(pS) \rightarrow e^+e^- / \mu^+\mu^-$
 - Use ΔM to account for $\sigma(\ell \ell)$
- Potential advantages
 - Low background
 - Few combinations, "clean" final state
 - Complete understanding of event
- Potential disadvantages
 - Efficiency loss
 - Branching fractions

GeV/c

Entries / 0.005

$\Upsilon(1S)$ DECAY MODES

Fraction (Γ_i/Γ)

Γ ₁	$\tau^+ \tau^-$	(2.60 ± 0.10) %
Γ_2	$e^+ e^-$	$(2.38 \pm 0.11)\%$
Γ ₃	$\mu^+ \mu^-$	(2.48 ± 0.05)%

Hadronic decays

Γ4	ggg	<mark>(</mark> 81.7	± 0.7) %
Γ ₅	$\gamma g g$	(2.2	± 0.6) %

Example analysis: Dipion transitions in Early Belle II Y(4S)data

BELLE2-NOTE-PH-2021-005, QWG/Moriond 2021

- Exclusive final state: $\pi^+\pi^-\ell^+\ell^-$ (e⁺e⁻, $\mu^+\mu^-$)
- Initial State Radiation production:
 - $\gamma_{\text{ISR}}\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)$
 - $\gamma_{\text{ISR}}\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S,2S)$
- Direct transitions: $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S,2S)$
- Analysis features
 - High p_T leptons, soft pions
 - Different quarkonium production mechanisms
 - Preview of Y(10753) $\rightarrow \pi^+\pi^-\Upsilon(1S,2S,3S)$

 Υ (4S) $\rightarrow \pi^+\pi^-\Upsilon$ (1S,2S) transitions

• Previously measured by BaBar and Belle

$\mathcal{BF}(\times 10^{-5})$	BaBar	Belle	Average
$\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S)$	8.2 ± 0.6	8.0 ± 0.7	8.1 ± 0.5
$\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(2S)$	7.9 ± 1.1	8.6 ± 1.3	8.2 ± 0.8

Basic Analysis Information

• Reconstruct $\pi^+\pi^-\ell^+\ell^-$ (e⁺e⁻, $\mu^+\mu^-$)

The lepton selection criteria are defined as:

- |dr| < 1 cm
- |dz| < 3 cm
- $-0.866 < \cos\theta < 0.9535$
- $p_T > 100 \text{ MeV}/c$
- at least 1 lepton eID > 0.9
- at least 1 lepton with $\mu ID > 0.9$
- $4 < p^*(\ell \ell) < 5.5 \text{ GeV}/c$
- $8.5 < M(\ell \ell) < 11 \text{ GeV}/c^2$

Basic track quality

Only need 1 good lepton

Reduce "junk" and restrict to useful combinations

nTracks == 4 ||nTracks == 5 Remove backgrounds (but not everything) $\cos \theta_{\pi\pi} < 0.95$ $m_{\pi\pi} > 50 \text{ MeV}/c^2$ Remove photon conversions ($\gamma \rightarrow e^+e^-$)

The pion selection criteria are

- π : |dr| < 1 cm
- $\pi: |dz| < 3 \text{ cm}$
- π : eID < 0.9
- π : $\mu ID < 0.9$
- $M(\pi\pi) < 2 \text{ GeV}/c^2$

Looser criteria to include soft pions

pions = not leptons **Restrict to useful** combinations

Pacific

Resolution improvement in $\Delta M = M(\pi \pi \ell \ell) - M(\ell \ell) + M_{PDG}(\Upsilon(1S))$ over $M(\ell \ell)$

- Use $M(\mu\mu)$ to understand muon momentum calibration

Energy Scan Overview / Bryan FULSOM (PNNL) / Belle II Physics Week / 2021.12.03

Example Results

Steps towards $\pi\pi\Upsilon$ **Energy Scan Analysis**

- At each E_{CM} : fit $\Delta M \rightarrow N_{evts} \rightarrow \sigma_{\pi\pi\gamma}$
- Include in fit with existing Belle data points
- Simultaneous fit with multiple B-W components

$$F_{\rm BW} = \frac{\sqrt{12\pi \Gamma \Gamma_{ee}^0 \times \mathcal{B}_f}}{s - M^2 + iM\Gamma} \sqrt{\frac{\Gamma_f(s)}{\Gamma_f(M^2)}}$$

- With sufficient statistics, examine $M(\pi\pi)$ and M($\pi\Upsilon$) distributions for intermediate structure Light mesons? Z_b? PHSP?
- To be continued...

 $\sigma(\Upsilon(1S)\pi^{+}\pi^{-})$ (pb)

 $\sigma(\Upsilon(2S)\pi^{+}\pi^{-})$ (pb)

 $\sigma(\Upsilon(3S)\pi^{+}\pi^{-})$ (pb)

10.5

10.6

Expected Analyses and Publications

Ъ <i>Г</i> 1			
Mode	Belle Status	Belle II Outcome	
Golden Modes			
$e^+e^- \to \pi^+\pi^-\Upsilon(pS)(\to \ell^+\ell^-)$	Published	B+BII combined	
$B\overline{B}$ decomposition	Published	B+BII combined	
$\pi^+\pi^-$ Dalitz	Needs data	First result	
$Y_b o \omega \eta_b(1S)$	Ongoing	B+BII or BII update	
$Y_b \to \omega \chi_{bJ}(1P)$	In pub./needs data/points	B+BII combined	
Silver Modes			
$Y_b \to \pi^+ \pi^- X$ (inclusive)	Needs data	First result	
$Y_b \to \eta X$ (inclusive)	Needs data	First result	
$Y_b \to \eta \Upsilon(1S, 2S) (\to \ell^+ \ell^-)$	Needs data	First search	
$Y_b \to \eta' \Upsilon(1S) (\to \ell^+ \ell^-)$	Needs data	First search	
$Y_b \to \Upsilon(1S)$ (inclusive)	Needs data	First result	
Bronze Modes			
$Y_b \to \gamma X_b$	Needs data	First search	
$Y_b \to \pi^0 \pi^0 \Upsilon(pS) (\to \ell^+ \ell^-)$	Needs data	First search	
$Y_b \to KK(\phi)\Upsilon(pS)(\to \ell^+\ell^-)$	Needs data	First search	
$Y_b \to \pi^0 \pi^0 X$ (inclusive)	Needs data	First search	
$Y_b \to \pi^0 X$ (incl. or excl.)	Needs data	First search	

Important and/or expected results

Interesting and/or established analyses

Difficult and/or unpredicted analyses

- Data processing/calibration
 - Some early 10.657 GeV data processed manually at KEKCC with online conditions
 - Central production and calibration expect completion December/January
- Associated performance studies
 - Beam energy measurements
 - High-p_T lepton calibration
 - Run 2021c at-large performance issues
- Conference targets
 - Spring (Lepton-Photon, Moriond): general advertisement of energy scan
 - Summer (ICHEP): preliminary results on main analyses
 - Fall (QWG): main target for several results
- Long-term motivation for $\Upsilon(6S)$ and other non- $\Upsilon(4S)$ runs

- QCD provides for a wide variety of conventional and exotic quark matter
- Experimental discoveries have propelled us into a new era of spectroscopy
- Belle II is poised to capitalize in this area to continue the successes of Belle
- Energy scan recently performed to understand features near 10.75 GeV
- Plenty of work to be done, please join the effort!

Thank you

