Time-Dependent Analysis Formulations

Takeo Higuchi

Kavli IPMU, the University of Tokyo

 π^+ decay – process to generate the secondary cosmic ray μ^+

• **1919, 1932**: discoveries of proton and neutron by E. Rutherford and J. Chadwick, respectively.

E. Rutherford

J. Chadwick

 ~1940s: recovery of the accelerator operation from the suspension by WWII and discoveries of tons of *new* particle with it.

The list of "elementary" particles:

Before 1940s: p, n, e^- + some exceptions

After 1940s: $p, n, e^-, \pi^0, \eta, \eta', K^+, K^-, \Delta^{++}, \Delta^0, \Xi^+, \Xi^0, \Sigma^+, ...$

TOO MUCH: "it is hard to believe they are really the elementary particles."

• **1953**: M. Gell-Mann hypothesized that all of those "new" particles are a composition of more fundamental 3 kinds of sub-particles: up, down, and strange quarks.

 $p \leftrightarrow n$ interaction

• **1963**: N. Cabibbo proposed a new particle interaction as a solution to the puzzle of strange particle decay to other particles

 1964: A new baryon Ω⁻(sss) was discovered in BNL, whose existence was theoretically predicted by the quark model.

• **1964:** J. W. Cronin *et al*. discovered the *CP* violation by in the neutral *K*-meson system with an experimental setup in BNL.

J. W. Cronin

- **1970:** S. L. Glashow, J. Iliopoulos, and L. Maiani proposed a new theory as a solution to the puzzle of the $K_L^0 \rightarrow \mu^+ \mu^-$ decay suppression. A new quark "charm" and a new interaction $d \leftrightarrow c$ were introduced.
- When we simply say "quarks" and "leptons", what eigenstates are implied?

Mass eigenstates

When we say "quark" and "lepton" exchanges, what eigenstates are implied?

Weak-interaction eigenstates

$$\begin{pmatrix} \overline{u}^{(w)} & \overline{c}^{(w)} \end{pmatrix} \gamma^{\mu} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d^{(w)} \\ s^{(w)} \end{pmatrix}$$

$$\gamma^{\mu} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d^{(w)} \\ a^{(w)} \end{pmatrix} \qquad (\overline{u}^{(m)} \ \overline{c}^{(m)}) \gamma^{\mu}$$

$$(m) \ \overline{c}^{(m)} \gamma^{\mu} \left(U^{u}_{(m) \to (w)} \right)^{\dagger} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \left(U^{d}_{(m) \to (w)} \right) \begin{pmatrix} d^{(m)} \\ s^{(m)} \end{pmatrix}$$

Change of the basis from (mass) to (weak interaction)

$$\begin{pmatrix} \overline{u}^{(m)} & \overline{c}^{(m)} \end{pmatrix} \gamma^{\mu} \begin{pmatrix} V_{ud} & V_{us} \\ V_{cd} & V_{cs} \end{pmatrix} \begin{pmatrix} d^{(m)} \\ s^{(m)} \end{pmatrix}$$

GIM mechanism

The annoying superscript (m) can be dropped.

Discrete Symmetry, C, P, T

Transformation	Ор	Note
Parity	Р	Transform the wavefunction position from x to $-x$
		Discovered by C. S. Wu <i>et al</i> . in the beta decay of ⁶⁰ Co in 1956. Corresponds to the fact that only LH'ed particles participate in the weak interaction.
Charge conjugation	С	Transform the internal quantum numbers of the particle
		Flips the sign of the electric charge, lepton number, and baryon number of the particle, but conserves the <i>E</i> , \vec{p} , <i>m</i> , and <u>spin</u> .
Time reversal	Т	Transform the wavefunction time from t to $-t$
		Discovered by the CPLEAR experiment in the neutral <i>K</i> -meson system in 1998.
Matter anti-matter	СР	Transform a particle to its anti-particle partner
		Discovered by J. W. Cronin <i>et al</i> . in the K_L^0 decay in 1964.
All of them	СРТ	Product of the <i>P</i> , <i>C</i> , and <i>T</i>
		Derived from Wightman's axioms. Ensures $m_A = m_{\bar{A}}$ and $\tau_A = \tau_{\bar{A}}$ together with the Bose/Fermi quantum statistics and other fundamental theorems. No evidence for the <i>CPT</i> violation.

Discovery of the *CP* **Violation**

• It was assumed that the mass eigenstate K_L^0 (observable particle) is also a *CP* eigenstate with the eigenvalue $\eta_{CP} = -1$ before 1964. J. W. Cronin *et al.* doubted this assumption and conducted an experiment to test it in 1964.

• They observed $45 \pm 9 K_L^0 \rightarrow \pi^+ \pi^-$ decays ($\eta_{CP} = +1$ decay). It turned out that the K_L^0 (mass eigenstate) is not a *CP* eigenstate ... *CP* violation.

J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).

1973: M. Kobayashi, T. Maskawa proposed a new theory to explain the *CP* violation discovered by J. W. Cronin *et al*. They predicted the number of quark kinds is >6 kinds only 3 kinds of them were discovered.

M. Kobayashi, T. Maskawa

1974: S. Ting and B. Richter made independent discoveries of the charm quark.

B. Richter

1977, 1995: the bottom and top quarks were discovered by expts. in Fermilab.

Kobayashi-Maskawa Theory

• GIM mechanism
$$j^{\mu} = -i \frac{g_{w}}{\sqrt{2}} \cdot (\bar{u} \ \bar{c}) \gamma^{\mu} \begin{pmatrix} V_{ud} & V_{us} \\ V_{cd} & V_{cs} \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$

- Quark flavor change from y to x - $j_{y \to x}^{\mu} \propto V_{xy} \frac{g_w}{\sqrt{2}}$

Anti-quark flavor change from \overline{y} to \overline{x} $j^{\mu}_{\overline{y} \to \overline{x}} \propto V^*_{xy} \frac{g_w}{\sqrt{2}}$

- When $V_{xy} \neq V_{xy}^*$ (i.e.: $\arg(V_{xy}) \neq 0$), the *CP* symmetry does not conserve.
- By extending the number of quark generations from 2 to 3 the matrix element may become complex.

In general, an $n \times n$ unitary matrix has $n^2 - n(n-1)/2 - (2n-1)$ irreducible complex numbers that cannot be removed by phase redefinition. When $n \ge 3$, $n^2 - n(n-1)/2 - (2n-1) \ge 1$.

Feynman Diagram Examples

The strength (amplitude \mathcal{M}) is proportional to ...

CKM Matrix

• The CKM matrix is a unitary matrix: $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

From the unitarity condition, 6 equations are derived.

- From physics discussion, the Wolfenstein parameterization is obtained:

$$V_{\text{CKM}} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- You need to remember that V_{td} and V_{ub} are complex.
- You need to remember $\lambda \approx 0.2$ plus the order of λ for each element.
- You need to remember $A \approx 0.8$.

CKM Matrix

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

mass → ≈2.3 MeV/c² ≈1.275 GeV/c² ≈173.07 GeV/c² charge \rightarrow 2/3 2/3 С 2/3 u t 1/2 1/2 spin \rightarrow 1/2 up charm top ≈4.8 MeV/c² ≈95 MeV/c² ≈4.18 GeV/c² QUARKS -1/3 -1/3 -1/3 S b 1/2 1/2 1/2 bottom down strange

PDG2020

 0.97370 ± 0.00014 _

 0.2245 ± 0.0008 0.221 \pm 0.004 0.987 \pm 0.011 (8.0 \pm 0.3)×10⁻³ (38.8 \pm 1.1)×10⁻³

$$(3.82 \pm 0.24) \times 10^{-3} (41.0 \pm 1.4) \times 10^{-3} 1.013 \pm 0.030$$

CKM Triangle

- Each of the equation forms a triangle on the complex plane.
- The bottom right triangle, which is associated to the equation $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ is moderately large.

• By assuming $V_{ud}V_{ub}^*$, $V_{cd}V_{cb}^*$, and $V_{td}V_{tb}^*$ are vectors, we can draw a triangle associated to the equation on the complex plane, which is called "CKM triangle".

Interior angle definition $\phi_{1} \equiv \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}}\right) = \pi - \arg(V_{td})$ $\phi_{2} \equiv \arg\left(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right)$ $\phi_{3} \equiv \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$ If the KM theory is correct, $\phi_{1} \neq 0, \pi$.

CKM Triangle – Current Status

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985 \pm 0.0005$ $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.025 \pm 0.020$ $|V_{ud}|^2 + |V_{cd}|^2 + |V_{tb}|^2 = 0.9970 \pm 0.0018$ $|V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 = 1.026 \pm 0.022$

The unitarity of the CKM matrix holds surprisingly well (except the first relation).

 K^0 ... Cronin *et al.* D^0, B^0 ... Belle, Belle II, BaBar, LHCb B_s^0 ... LHCb

Even if the neutral meson is initially X^0 , the probability to find the particle in the \bar{X}^0 state (*CP* partner of the X^0) is non zero after a certain time *t* because of the process called

 $X^0 - \overline{X}^0$ Mixing

Note: nothing relevant to the pair creation!

Each box diagram has $V_{td} \times V_{td}$.

By using the B^0 - \overline{B}^0 mixing mechanism, we can measure the V_{td}^2 phase.

- Does the *B*⁰ meson really exist?
- Does the $B^0 \overline{B}^0$ mixing really exist?

Test of the KM Theory: Measurement of V_{td}

- Hypothesize that V_{td} (and V_{ub}) are complex.
- How do we measure the V_{td} phase, $\arg(V_{td})$? \rightarrow should use particle interactions that contain V_{td} like these:

• The $B^0 - \overline{B}^0$ mixing is a useful phenomenon to access $\arg(V_{td})$.

$B^0 - \overline{B}^0$ Coherence

- Just *forget* about the $B^0 \overline{B}^0$ mixing.
- When B^0 and \overline{B}^0 are pair-produced from the $\Upsilon(4S) \to B^0 \overline{B}^0$ decay, the two *B*-mesons take neither (B^0, B^0) nor $(\overline{B}^0, \overline{B}^0)$ state but only the (B^0, \overline{B}^0) state.

 $\Upsilon(4S)$ is a S = 1 boson, and B^0 , \overline{B}^0 are S = 0 boson. Because of the angular momentum conservation, the orbital angular momentum L between the two B mesons is L = 1.

If both of the two *B* mesons take the same particle state B^0 , the wavefunction of the system is exchange-

symmetric of the two *B* mesons because of the Bose-Einstein statistics. However, the wavefunction must be exchange-antisymmetric of two same particles with L = 1. These two statements are inconsistent. The same inconsistency is true for the \overline{B}^0 - \overline{B}^0 system.

Thence, only the (B^0, \overline{B}^0) state is allowed.

$B^0 - \overline{B}^0$ Mixing And $B^0 - \overline{B}^0$ Coherence

- The flavor of the two *B* mesons can be known only $\dots B^0 \overline{B}^0$ mixing stochastically until they decay to some other particles.
- One of the two *B* mesons B_1 decays to a flavor specific state. The B_1 flavor can be known from the decay products.
- The flavor of the other *B* meson B_2 at the time of the B_1 ... $B^0 \overline{B}^0$ coherence decay $t=t_1$ is opposite to the B_1 flavor.
- The B_2 flavor can be known only statistically after t_1 until it decays to some other particles. $... B^0 \overline{B}^0$ mixing

CP Violation in **B** Decays

I. I. Bigi

A. I. Sanda

Phenomenologist who theoretically developed the measurement procedure of the *CP* violation in *B* decays.

• A meson initially in the B^0 state $|B^0\rangle \xrightarrow{\text{after a time } t} |B^0(t)\rangle = \odot |B^0\rangle + \odot |B^0\rangle$

 $\odot \neq 1$ and $\odot \neq 0$ is the essence of the B^0 - \overline{B}^0 mixing

• A meson initially in the \overline{B}^0 state $\left|\overline{B}^0\right\rangle \xrightarrow{\text{after a time } t} \left|\overline{B}^0\left(t\right)\right\rangle = \mathcal{O}\left|\overline{B}^0\right\rangle + \mathcal{O}\left|\overline{B}^0\right\rangle$

 $4extcolored \neq 0$ and $1extcolored \neq 1$ is the essence of the B^0 - \overline{B}^0 mixing

How do we express 🕲 *etc*. as a function of *t* in general?

- Remember quantum mechanics: discussion on the time propagation of a state
 → discussion on the energy of the state → discussion on the mass of the state.
- As J. W. Christenson demonstrated, the $|X^0\rangle$ and $|\bar{X}^0\rangle$ are a *CP* eigenstate but not a mass eigenstate.
- Relate the *CP* eigenstate to a mass eigenstates by force.

•
$$|B(t)\rangle = \bigotimes(t)|B\rangle + \bigotimes(t)|\bar{B}^0\rangle \equiv \alpha(t)\begin{pmatrix}1\\0\\|B^0\rangle + \beta(t)\begin{pmatrix}0\\1\\|\bar{B}^0\rangle = \begin{pmatrix}\alpha(t)\\\beta(t)\end{pmatrix}$$

• The phenomenological time-dependent Schrödinger equations are:

$$i\frac{\partial}{\partial t} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} = \mathcal{H} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} \implies i\frac{\partial}{\partial t} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2}\Gamma \end{pmatrix} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} \boxed{X^0, \bar{X}^0 \text{ mass and decay}}$$
$$\equiv \begin{pmatrix} M_{11} - i\Gamma_{11}/2 & M_{12} - i\Gamma_{12}/2 \\ M_{21} - i\Gamma_{21}/2 & M_{22} - i\Gamma_{22}/2 \end{pmatrix} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix}$$

Because the operators M and Γ are Hermitian, $M_{21} = M_{12}^*$ and $\Gamma_{21} = \Gamma_{12}^*$. Then, because of the *CPT* theorem, $M_{11} = M_{22} \equiv M$ and $\Gamma_{11} = \Gamma_{22} \equiv \Gamma$.

$$i\frac{\partial}{\partial t}\binom{\alpha(t)}{\beta(t)} = \binom{M-i\Gamma/2}{M_{12}^*-i\Gamma_{12}^*/2} \quad \frac{M_{12}-i\Gamma_{12}/2}{M-i\Gamma/2}\binom{\alpha(t)}{\beta(t)}$$

• If $M_{12} - i\Gamma_{12}/2 = M_{12}^* - i\Gamma_{12}^*/2 = 0 \rightarrow \text{no } B^0 - \overline{B}^0$ mixing; otherwise, the $B^0 - \overline{B}^0$ mixing occurs and $|B(t)\rangle$ and $|\overline{B}(t)\rangle$ are no longer the mass eigenstates.

• Let the eigenvectors of $\left(M - \frac{i}{2}\Gamma\right) = \begin{pmatrix} M - i\Gamma/2 & M_{12} - i\Gamma_{12}/2 \\ M_{12}^* - i\Gamma_{12}^*/2 & M - i\Gamma/2 \end{pmatrix}$ and the associated eigenvalues to be $|B_H\rangle$, μ_H and $|B_L\rangle$, μ_L . These definitions lead

 $|B_H(t)\rangle = \exp(-i\mu_H t) |B_H\rangle$ and $|B_L(t)\rangle = \exp(-i\mu_L t) |B_L\rangle$.

• On the other hand, by an arithmetic calculation, we obtain

$$|B_{H}\rangle = p |B^{0}\rangle - q |\bar{B}^{0}\rangle, \ \mu_{H} = M - i\Gamma/2 - \sqrt{(M_{12} - i\Gamma_{12}/2)(M_{12}^{*} - i\Gamma_{12}^{*}/2)} \text{ and } |B_{L}\rangle = p |B^{0}\rangle + q |\bar{B}^{0}\rangle, \ \mu_{L} = M - i\Gamma/2 + \sqrt{(M_{12} - i\Gamma_{12}/2)(M_{12}^{*} - i\Gamma_{12}^{*}/2)},$$
where $\frac{p}{q} = \sqrt{\frac{M_{12}^{*} - i\Gamma_{12}^{*}/2}{M_{12} - i\Gamma_{12}/2}} \text{ and } |p|^{2} + |q|^{2} = 1.$

Additionally, we obtain

 $|B^0\rangle = (|B_L\rangle + |B_H\rangle)/2p$ and $|\overline{B}^0\rangle = (|B_L\rangle - |B_H\rangle)/2q$.

B⁰-Meson Decay

• Finally, we obtain

$$|B^{0}(t)\rangle = \frac{1}{2} \Big[(\exp(-i\mu_{L}t) + \exp(-i\mu_{H}t)) |B^{0}\rangle + \frac{q}{p} (\exp(-i\mu_{L}t) - \exp(-i\mu_{H}t)) |\bar{B}^{0}\rangle \Big]$$
$$|\bar{B}^{0}(t)\rangle = \frac{1}{2} \Big[\frac{p}{q} (\exp(-i\mu_{L}t) - \exp(-i\mu_{H}t)) |B^{0}\rangle + (\exp(-i\mu_{L}t) + \exp(-i\mu_{H}t)) |\bar{B}^{0}\rangle \Big]$$

• By defining $f_{\pm}(t) \equiv \frac{1}{2} (\exp(-i\mu_L t) \pm \exp(-i\mu_H t))$ for brevity, we obtain $|B^0(t)\rangle \equiv f_+(t)|B^0\rangle + \frac{q}{p}f_-(t)|\bar{B}^0\rangle$ and $|\bar{B}^0(t)\rangle \equiv \frac{p}{q}f_-(t)|B^0\rangle + f_+(t)|\bar{B}^0\rangle$.

Application: $B^0 - \overline{B}^0$ Mixing

• By defining $f_{\pm}(t) \equiv \frac{1}{2} (\exp(-i\mu_L t) \pm \exp(-i\mu_H t))$ for brevity, we obtain

$$|\underline{B^{0}(t)}\rangle \equiv f_{+}(t)|\underline{B^{0}}\rangle + \frac{q}{p}f_{-}(t)|\overline{B^{0}}\rangle \text{ and } |\overline{B^{0}(t)}\rangle \equiv \frac{p}{q}f_{-}(t)|\underline{B^{0}}\rangle + f_{+}(t)|\overline{B^{0}}\rangle.$$

• Probability to find the particle in the $|B^0\rangle$ and $|\overline{B}^0\rangle$ states at a time *t* that was initially in the $|B^0\rangle$ state are

$$\begin{split} |\langle B^{0}|B^{0}(t)\rangle|^{2} &= |f_{+}(t)|^{2} = \frac{1}{2}\exp(-\Gamma t)\left[\cosh\left(\frac{\Delta\Gamma_{d}}{2}t\right) + \cos(\Delta m_{d}t)\right] \\ |\langle \overline{B}^{0}|B^{0}(t)\rangle|^{2} &= \left|\frac{q}{p}f_{-}(t)\right|^{2} = \frac{1}{2}\left|\frac{q}{p}\right|^{2}\exp(-\Gamma t)\left[\cosh\left(\frac{\Delta\Gamma_{d}}{2}t\right) - \cos(\Delta m_{d}t)\right], \text{ respectively,} \\ \text{ where } m_{LH} &\equiv \mathcal{R}e(\mu_{LH}), \Gamma_{LH} \equiv -2\mathcal{I}m(\mu_{LH}), \Delta m_{d} \equiv m_{H} - m_{L}, \text{ and } \Delta\Gamma_{d} \equiv \Gamma_{H} - \Gamma. \end{split}$$

• In a system that the approximations $|q/p| \approx 1$ and $\Delta\Gamma \approx 0$ hold, $P(B^0 \to B^0; t) = \frac{1}{2} \exp(-\Gamma_d t) [1 + \cos(\Delta m_d t)] \dots$ unmixed (same eq. for $\overline{B}^0 \to \overline{B}^0$) $P(B^0 \to \overline{B}^0; t) = \frac{1}{2} \exp(-\Gamma_d t) [1 - \cos(\Delta m_d t)] \dots$ mixed (same eq. for $\overline{B}^0 \to B^0$)

Application: $B^0 - \overline{B}^0$ Mixing

$$P_{\text{unmixed}}(t) = \frac{1}{2} \exp(-\Gamma_d t) \left[1 + \cos(\Delta m_d t)\right], \ P_{\text{mixed}}(t) = \frac{1}{2} \exp(-\Gamma_d t) \left[1 - \cos(\Delta m_d t)\right]$$

Again, the $B^0 - \overline{B}{}^0$ mixing is an independent phenomenon of the $B^0 \overline{B}{}^0$ pair creation.

Application: $B^0 - \overline{B}^0$ Mixing

$$\int_{0}^{+\infty} dt \frac{P_{\text{mixed}}(t)}{P_{\text{unmixed}}(t) + P_{\text{mixed}}(t)} = \frac{\Delta m_d^2}{2(\Gamma_d^2 + \Delta m_d^2)} \equiv \chi_d$$

The χ_d is sometimes called a time-integrated mixing parameter.

Measurement of Δm_d at Belle

 Δm_d results from Belle II will come soon...

Asymmetry
$$A(t) \equiv \frac{P_{\text{unmixed}}(t) - P_{\text{mixed}}(t)}{P_{\text{unmixed}}(t) + P_{\text{mixed}}(t)}$$

When the effects from the wrong tagging probability and vertex reconstruction resolution are negligible, $A(t) = \cos \Delta m_d t$.

$$\Delta m_d = (0.511 \pm 0.005 \pm 0.006) \text{ ps}^{-1}$$

with 152M $B\bar{B}$

Belle Collaboration, Phys. Rev. D 71, 072003 (2005).

The Δt must be used in the equation above instead of the t. This "misuse" is on purpose to simplify the discussion here. The replacement of the t with the Δt is discussed in the next few pages.

Application: $B^0 - \overline{B}^0$ Coherence <u>at Belle (II)</u>

- A critical difference between the $B^0 \overline{B}^0$ mixing in a general setup and that in the Belle (II) setup: **at Belle and Belle II, two** *B***-mesons are pair-produced and they are entangled** (i.e.: the two B mesons take only the (B^0, \overline{B}^0) state until one of them decays).
- The wavefunction of the two-*B*-meson system $|\text{Belle}(t_1, t_2)\rangle$ at the time of the pair production, $t_1 = 0$ and $t_2 = 0$, is

$$|\text{Belle}(0,0)\rangle = \frac{1}{\sqrt{2}} \left(\left| B_1^0 \bar{B}_2^0 \right\rangle - \left| \bar{B}_1^0 B_2^0 \right\rangle \right) \\ \text{Exchange asymmetric} \qquad X |\text{Belle}(0,0)\rangle = \frac{1}{\sqrt{2}} \left(\left| B_1^0 \bar{B}_2^0 \right\rangle + \left| \bar{B}_1^0 B_2^0 \right\rangle \right) \\ \text{Exchange symmetric}$$

- The general wavefunction to observe one *B* at $t = t_1$ and the other at $t = t_2$ is $|\text{Belle}(t_1, t_2)\rangle = \frac{1}{\sqrt{2}} \left(|B_1^0(t_1)\rangle |\bar{B}_2^0(t_2)\rangle - |\bar{B}_1^0(t_1)\rangle |B_2^0(t_2)\rangle \right)$
- By recalling $|B^{0}(t)\rangle \equiv f_{+}(t)|B^{0}\rangle + \frac{q}{p}f_{-}(t)|\bar{B}^{0}\rangle, \ |\bar{B}^{0}(t)\rangle \equiv \frac{p}{q}f_{-}(t)|B^{0}\rangle + f_{+}(t)|\bar{B}^{0}\rangle$ $|\text{Belle}(t_{1}, t_{2})\rangle = \frac{1}{\sqrt{2}}e^{-\frac{\Gamma}{2}(t_{1}+t_{2})}\times$ $\left[i\sin\frac{\Delta m_{d}(t_{2}-t_{1})}{2}\left(\frac{p}{q}|B_{1}^{0}B_{2}^{0}\rangle - \frac{q}{p}|\bar{B}_{1}^{0}\bar{B}_{2}^{0}\rangle\right) + \cos\frac{\Delta m_{d}(t_{2}-t_{1})}{2}\left(|B_{1}^{0}\bar{B}_{2}^{0}\rangle - |B_{1}^{0}\bar{B}_{2}^{0}\rangle\right)\right]$

•
$$|\text{Belle}(t_1, t_2)\rangle = \frac{1}{\sqrt{2}} e^{-\frac{\Gamma}{2}(t_1 + t_2)} \times \left[i \sin \frac{\Delta m_d(t_2 - t_1)}{2} \left(\frac{p}{q} | B_1^0 B_2^0 \right) - \frac{q}{p} | \bar{B}_1^0 \bar{B}_2^0 \right) + \cos \frac{\Delta m_d(t_2 - t_1)}{2} \left(| B_1^0 \bar{B}_2^0 \right) - | B_1^0 \bar{B}_2^0 \right) \right]$$

- Define the $B \to f_{CP}$ decay amplitudes by $\langle f_{CP} | \mathcal{H}_d | B^0 \rangle \equiv \mathcal{A}_{f_{CP}}, \ \langle f_{CP} | \mathcal{H}_d | \overline{B}^0 \rangle \equiv \overline{\mathcal{A}}_{f_{CP}}, \text{ and } \lambda_{f_{CP}} \equiv \frac{\overline{\mathcal{A}}_{f_{CP}}}{\mathcal{A}_{f_{CP}}} \cdot \frac{q}{p}$.
- Define the flavor-specific *B*-decay amplitudes by $\langle \ell^+ D^- \nu_{\ell} | \mathcal{H}_d | B^0 \rangle = \bar{\mathcal{A}}_{\ell^+}, \quad \langle \ell^+ D^- \nu_{\ell} | \mathcal{H}_d | \bar{B}^0 \rangle = 0$ in the SM. $\langle \ell^- D^+ \bar{\nu}_{\ell} | \mathcal{H}_d | B^0 \rangle = 0, \quad \langle \ell^- D^+ \bar{\nu}_{\ell} | \mathcal{H}_d | \bar{B}^0 \rangle = \bar{\mathcal{A}}_{\ell^-}, \quad The same in the SM \equiv \mathcal{A}_{SL}.$
- Then, the probability to find a signature for the $[B^0\bar{B}^0] \rightarrow [(\ell^- D^+ \bar{\nu}_\ell)_1 (f_{CP})_2]$ in the Belle (II) detector at the time t_1 and t_2 , respectively, and the probability to find a signature for the $[B^0\bar{B}^0] \rightarrow [(\ell^+ D^- \nu_\ell)_\ell (f_{CP})_\ell]$ in the

the probability to find a signature for the $[B^0\overline{B}^0] \rightarrow [(\ell^+ D^- \nu_\ell)_1 (f_{CP})_2]$ in the Belle (II) detector at the time t_1 and t_2 , respectively,

are computed as the ones on the next page.

• The probability to find a signature for the $[B^0\overline{B}^0] \rightarrow [(\ell^- D^+ \overline{\nu}_\ell)_1 (f_{CP})_2]$ in the Belle (II) detector at the time t_1 and t_2 , respectively, is:

$$\langle (\ell^{-}D^{+}\bar{v}_{\ell})_{2}(f_{CP})_{1} | \mathcal{H}_{d} | \text{Belle}(t_{1}, t_{2}) \rangle = \frac{1}{2} e^{-\Gamma(t_{1}+t_{2})} | \mathcal{A}_{SL} |^{2} | \mathcal{A}_{f_{CP}} |^{2} \times \\ \times \left[\frac{\left(1 - \left|\lambda_{f_{CP}}\right|^{2}\right) + \left(1 - \left|\lambda_{f_{CP}}\right|^{2}\right)}{2} \cos[\Delta m_{d}(t_{2} - t_{1})] - \mathcal{I}m(\lambda_{f_{CP}}) \sin[\Delta m_{d}(t_{2} - t_{1})] \right]$$

• The probability to find a signature for the $[B^0\overline{B}^0] \rightarrow [(\ell^+D^-\nu_\ell)_1(f_{CP})_2]$ in the Belle (II) detector at the time t_1 and t_2 , respectively, is:

$$\langle (\ell^+ D^- \nu_\ell)_2 (f_{CP})_1 | \mathcal{H}_d | \text{Belle}(t_1, t_2) \rangle = \frac{1}{2} e^{-\Gamma(t_1 + t_2)} | \mathcal{A}_{SL} |^2 | \mathcal{A}_{f_{CP}} |^2 \times (p/q)^2 \\ \times \left[\frac{\left(1 + |\lambda_{f_{CP}}|^2 \right) - \left(1 - |\lambda_{f_{CP}}|^2 \right)}{2} \cos[\Delta m_d(t_2 - t_1)] + \mathcal{I}_m(\lambda_{f_{CP}}) \sin[\Delta m_d(t_2 - t_1)] \right]$$

• By approximating
$$\left|\mathcal{A}_{f_{CP}}/\bar{\mathcal{A}}_{f_{CP}}\right| \approx 1$$
 and $|q/p| \approx 1$,
 $\left\langle (\ell^{\pm}D\nu)_{2}(f_{CP})_{1} \left|\mathcal{H}_{d}\right|$ Belle $(t_{1}, t_{2}) \right\rangle \propto e^{-\Gamma(t_{1}+t_{2})} [1 \pm \mathcal{I}m(\lambda_{f_{CP}}) \sin[\Delta m_{d}(t_{2}-t_{1})]]$

- The Belle (II) detector cannot measure the absolute time from the paircreation of the two *B* mesons to their decay \rightarrow absolute time t_1 or t_2 cannot be measured, individually. But it can **measure the time difference** $\Delta t \equiv t_2 - t_1$.
- To account for the ambiguity in t_1 and t_2 , apply $\int_0^{+\infty} dt_2 \int_0^{+\infty} dt_1 \, \delta(t_2 - t_1 - \Delta t)$ to $\langle (\ell^{\pm} D\nu)_2 (f_{CP})_1 | \mathcal{H}_d | \text{Belle}(t_1, t_2) \rangle$.

•
$$\int_0^{+\infty} dt_2 \int_0^{+\infty} dt_t \,\,\delta(t_2 - t_1 - \Delta t) \,\left\langle (\ell^{\pm} D\nu)_2(f_{CP})_1 \Big| \mathcal{H}_d \Big| \text{Belle}(t_1, t_2) \right\rangle$$

$$\propto e^{-\Gamma|\Delta t|} (1 \pm \Im m(\lambda_{f_{CP}}) \sin \Delta m_d \Delta t).$$

By replacing the Γ with τ_{B^0} and taking the normalization,

$$P(t;\ell^{\pm}) = \frac{1}{2\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} (1 \pm \Im m(\lambda_{f_{CP}}) \sin \Delta m_d \Delta t)$$

• By applying a similar discussion to the B^0 - \overline{B}^0 mixing, one obtains

$$P(t; \ell^{\pm}) = \frac{1}{2\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} (1 \pm \cos \Delta m_d \Delta t) + \text{for unmixed} - \text{for mixed}$$

The Last Piece, $\lambda_{f_{CP}}$

• Assume we use the golden mode for the test of the Kobayashi-Maskawa theory, where $B^0 \rightarrow J/\psi K_S^0$ and $\overline{B}^0 \rightarrow J/\psi K_S^0$.

• For
$$B^0(\bar{B}^0) \to J/\psi K_S^0$$
, $\lambda_{J/\psi K_S^0} \equiv \frac{\mathcal{A}_{f_{CP}}}{\bar{\mathcal{A}}_{f_{CP}}} \cdot \frac{q}{p} = \xi_{J/\psi K_S^0} \frac{V_{cb}^* V_{cs} V_{us} V_{ud}}{V_{cb} V_{cs}^* V_{us} V_{ud}^*} \cdot \frac{V_{fb}^* V_{td}}{V_{tb} V_{td}^*}$

Since only V_{td} and V_{ub} are complex, $\lambda_{J/\psi K_S^0} = \xi_{J/\psi K_S^0} \cdot e^{-2i\phi_1}$.

$$\Im m\left(\lambda_{J/\psi K_S^0}\right) = -\xi_{J/\psi K_S^0} \sin 2\phi_1 = \sin 2\phi_1.$$

$$P(t;\ell^{\pm}) = \frac{1}{2\tau_{B^0}} e^{-\frac{|\Delta t|}{\tau_{B^0}}} (1 \pm \sin 2\phi_1 \sin \Delta m_d \Delta t)$$

• $\mathcal{I}m(\lambda_{f_{CP}})$ depends on the $\mathcal{A}_{f_{CP}}$ and $\overline{\mathcal{A}}_{f_{CP}}$, which are determined by the chosen $B^0(\overline{B}{}^0) \to f_{CP}$ mode. For example, if one chooses $B^0(\overline{B}{}^0) \to \pi^+\pi^-$, he/she obtains the $P(t; \ell^{\pm})$ equation with sin $2\phi_2$.

Hitchhikers' Summary

Three Types of CP Violation

1. Direct CP violation

Matter-antimatter asymmetry when $\mathcal{A}_{f_{CP}} \neq \overline{\mathcal{A}}_{f_{CP}}$. The decay final state is not necessary a *CP* eigenstate, which means $\mathcal{A}_{f} \neq \overline{\mathcal{A}}_{\overline{f}}$.

2. Indirect CP violation

Matter-antimatter asymmetry when $|q/p| \neq 1$ while we usually assume $|q/p| \neq 1$ in the *B*-meson system.

3. Mixing induced *CP* violation

Measure with the timedependent analysis method

Matter-antimatter asymmetry in the interference between with and without mixing (i.e.: $B^0 \to \overline{B}{}^0, \overline{B}{}^0 \to B^0$ and $B^0 \to B^0, \overline{B}{}^0 \to \overline{B}{}^0$, respectively).

That's All.