Time-Dependent Analysis Formulations

Takeo Higuchi
Kavli IPMU, the University of Tokyo

Weak Interaction

e^{-}Electron
\bar{v}_{e} Antineutrino
π^{+}decay - process to generate the secondary cosmic ray μ^{+}

History of the Weak Interaction

- 1919, 1932: discoveries of proton and neutron by E. Rutherford and J. Chadwick, respectively.

E. Rutherford

Isospin up

J. Chadwick

Isospin down

- ~1940s: recovery of the accelerator operation from the suspension by WWII and discoveries of tons of new particle with it.

The list of "elementary" particles:
Before 1940s: $p, n, e^{-}+$some exceptions
After 1940s: $p, n, e^{-}, \pi^{0}, \eta, \eta^{\prime}, K^{+}, K^{-}$, $\Delta^{++}, \Delta^{+}, \Delta^{0}, \Xi^{+}, \Xi^{0}, \Sigma^{+}, \ldots$

TOO MUCH: "it is hard to believe they are really the elementary particles."

History of the Weak Interaction

- 1953: M. Gell-Mann hypothesized that all of those "new" particles are a composition of more fundamental 3 kinds of sub-particles: up, down, and strange quarks.

M. Gell-Mann
N. Cabibbo

- 1963: N. Cabibbo proposed a new particle interaction as a solution to the puzzle of strange particle decay to other particles

History of the Weak Interaction

- 1964: A new baryon Ω^{-}(sss) was discovered in BNL, whose existence was theoretically predicted by the quark model.

- 1964: J. W. Cronin et al. discovered the $C P$ violation by in the neutral K-meson system with an experimental setup in BNL.

J. W. Cronin

History of the Weak Interaction

- 1970: S. L. Glashow, J. Iliopoulos, and L. Maiani proposed a new theory as a solution to the puzzle of the $K_{L}^{0} \rightarrow \mu^{+} \mu^{-}$decay suppression. A new quark "charm" and a new interaction $d \leftrightarrow c$ were introduced.
- When we simply say "quarks" and
 "leptons", what eigenstates are implied?

Mass eigenstates

- When we say "quark" and "lepton" exchanges, what eigenstates are implied?

S. Glashow

J. Iliopoulos

L. Maiani

$$
\left(\bar{u}^{(w)} \bar{c}^{(w)}\right) \gamma^{\mu}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{d^{(w)}}{S^{(w)}}
$$

$$
\left(\bar{u}^{(m)} \bar{c}^{(m)}\right) \gamma^{\mu}\left(U_{(m) \rightarrow(w)}^{u}\right)^{\dagger}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(U_{(m) \rightarrow(w)}^{d}\right)\binom{d^{(m)}}{S^{(m)}}
$$

Change of the basis from (mass) to (weak interaction)

$$
\left(\bar{u}^{(m)} \bar{c}^{(m)}\right) \gamma^{\mu}\left(\begin{array}{ll}
V_{u d} & V_{u s} \\
V_{c d} & V_{c S}
\end{array}\right)\binom{d^{(m)}}{s^{(m)}}
$$

GIM mechanism

The annoying superscript (m) can be dropped.

Discrete Symmetry, C, P, T

Transformation	Op	Note
Parity	P	Transform the wavefunction position from \boldsymbol{x} to $-\boldsymbol{x}$ Discovered by C. S. Wu et al. in the beta decay of ${ }^{60}$ Co in 1956. Corresponds to the fact that only LH'ed particles participate in the weak interaction.
Charge conjugation	C	Transform the internal quantum numbers of the particle Flips the sign of the electric charge, lepton number, and baryon number of the particle, but conserves the E, \vec{p}, m, and spin.
Time reversal	T	Transform the wavefunction time from \boldsymbol{t} to $-\boldsymbol{t}$ Discovered by the CPLEAR experiment in the neutral K-meson system in 1998.
Matter anti-matter	$C P$	Transform a particle to its anti-particle partner Discovered by J. W. Cronin $e t$ al. in the K_{L}^{0} decay in 1964.
All of them	$C P T$	Product of the $\boldsymbol{P}, \boldsymbol{C}$, and \boldsymbol{T} Derived from Wightman's axioms. Ensures $m_{A}=m_{\bar{A}}$ and $\tau_{A}=$ $\tau_{\bar{A}}$ together with the Bose/Fermi quantum statistics and other fundamental theorems. No evidence for the $C P T$ violation.

Discovery of the CP Violation

- It was assumed that the mass eigenstate K_{L}^{0} (observable particle) is also a $C P$ eigenstate with the eigenvalue $\eta_{C P}=-1$ before 1964. J. W. Cronin et al. doubted this assumption and conducted an experiment to test it in 1964.

- They observed $45 \pm 9 K_{L}^{0} \rightarrow \pi^{+} \pi^{-}$decays ($\eta_{C P}=+1$ decay). It turned out that the K_{L}^{0} (mass eigenstate) is not a $C P$ eigenstate ... $C P$ violation.
J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).

History of the Weak Interaction

- 1973: M. Kobayashi, T. Maskawa proposed a new theory to explain the $C P$ violation discovered by J. W. Cronin et $a l$. They predicted the number of quark kinds is >6 kinds only 3 kinds of them were discovered.

M. Kobayashi, T. Maskawa
- 1974: S. Ting and B. Richter made independent discoveries of the charm quark.

S. C. Ting

B. Richter
- 1977, 1995: the bottom and top quarks were discovered by expts. in Fermilab.

Kobayashi-Maskawa Theory

- GIM mechanism $j^{\mu}=-i \frac{g_{w}}{\sqrt{2}} \cdot\left(\begin{array}{ll}\bar{u} & \bar{c}\end{array}\right) \gamma^{\mu}\left(\begin{array}{ll}V_{u d} & V_{u s} \\ V_{c d} & V_{c s}\end{array}\right)\binom{d}{s}$

Quark flavor change from \boldsymbol{y} to \boldsymbol{x}

$$
j_{y \rightarrow x}^{\mu} \propto V_{x y} \frac{g_{w}}{\sqrt{2}}
$$

[Anti-quark flavor change from \bar{y} to \bar{x}

$$
j_{\bar{y} \rightarrow \bar{x}}^{\mu} \propto V_{x y}^{*} \frac{g_{w}}{\sqrt{2}}
$$

- When $V_{x y} \neq V_{x y}^{*}$ (i.e.: $\arg \left(V_{x y}\right) \neq 0$), the $C P$ symmetry does not conserve.
- By extending the number of quark generations from 2 to 3 the matrix element may become complex.

Kobayashi-Maskawa (3 generations)

CKM matrix

In general, an $n \times n$ unitary matrix has $n^{2}-n(n-1) / 2-(2 n-1)$
 irreducible complex numbers that cannot be removed by phase redefinition. When $n \geq 3, n^{2}-n(n-1) / 2-(2 n-1) \geq 1$.

Feynman Diagram Examples

The strength (amplitude \mathcal{M}) is proportional to ...

$$
\mathcal{M}_{\pi^{+} \rightarrow \mu^{+} v_{\mu}} \propto V_{u d}^{*}
$$

CKM Matrix

- The CKM matrix is a unitary matrix: $\left(\begin{array}{lll}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)^{\dagger}\left(\begin{array}{lll}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right) \equiv\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

From the unitarity condition, 6 equations are derived.
(a) $V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0$
(d) $V_{c d} V_{t d}^{*}+V_{c s} V_{t s}^{*}+V_{c b} V_{t b}^{*}=0$
(b) $V_{u d} V_{c d}^{*}+V_{u s} V_{c s}^{*}+V_{u b} V_{c b}^{*}=0$
(e) $V_{u d} V_{t d}^{*}+V_{u s} V_{t s}^{*}+V_{u b} V_{t b}^{*}=0$
(c) $V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0$
(f) $\quad V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$

- From physics discussion, the Wolfenstein parameterization is obtained:

$$
V_{\mathrm{CKM}} \equiv\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- You need to remember that $V_{t d}$ and $V_{u b}$ are complex.
- You need to remember $\lambda \approx 0.2$ plus the order of λ for each element.
- You need to remember $A \approx 0.8$.

CKM Matrix

$V_{\text {CKM }}=\left(\begin{array}{lll}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)$

$$
=\left(\begin{array}{ccc}
0.97370 \pm 0.00014 & 0.2245 \pm 0.0008 & (3.82 \pm 0.24) \times 10^{-3} \\
0.221 \pm 0.004 & 0.987 \pm 0.011 & (41.0 \pm 1.4) \times 10^{-3} \\
(8.0 \pm 0.3) \times 10^{-3} & (38.8 \pm 1.1) \times 10^{-3} & 1.013 \pm 0.030
\end{array}\right)
$$

PDG2020

CKM Triangle

- Each of the equation forms a triangle on the complex plane.
- The bottom right triangle, which is associated to the equation $V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$ is moderately large.

(d)

- By assuming $V_{u d} V_{u b}^{*}, V_{c d} V_{c b}^{*}$, and $V_{t d} V_{t b}^{*}$ are vectors, we can draw a triangle associated to the equation on the complex plane, which is called "CKM triangle".

Interior angle definition

$$
\begin{gathered}
\phi_{1} \equiv \arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right)=\pi-\arg \left(V_{t d}\right) \\
\phi_{2} \equiv \arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right) \\
\phi_{3} \equiv \arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)
\end{gathered}
$$

If the KM theory is correct, $\phi_{1} \neq 0, \pi$.

CKM Triangle - Current Status

$$
\begin{aligned}
& \phi_{1} \equiv \arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{b b}^{*}}\right)=\left(22.56_{-0.40}^{+0.47}\right)^{\circ} \\
& \phi_{2} \equiv \arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right)=\left(91.7_{-1.1}^{+1.7}\right)^{\circ} \\
& \phi_{3} \equiv \arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)=\left(65.8_{-1.29}^{+0.94}\right)^{\circ} \\
& \left|V_{c b}\right|=0.04162_{-0.00080}^{+0.0026} \\
& \left|V_{u b}\right|=0.003683_{-0.000061}^{+0.000075}
\end{aligned}
$$

$\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9985 \pm 0.0005$
$\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}=1.025 \pm 0.020$
$\left|V_{u d}\right|^{2}+\left|V_{c d}\right|^{2}+\left|V_{t b}\right|^{2}=0.9970 \pm 0.0018$
$\left|V_{u s}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{t s}\right|^{2}=1.026 \pm 0.022$
The unitarity of the CKM matrix holds surprisingly well (except the first relation).

Even if the neutral meson is initially X^{0}, the probability to find the particle in the \bar{X}^{0} state ($C P$ partner of the X^{0}) is non zero after a certain time t because of the process called
$\underline{X}^{0}-\bar{X}^{0}$ Mixing

Note: nothing relevant to the pair creation!

$B^{\mathbf{0}}-\bar{B}^{\mathbf{0}}$ Mixing

- Does the B^{0} meson really exist? - Does the $B^{0}-\bar{B}^{0}$ mixing really exist?

Test of the KM Theory: Measurement of $V_{t d}$

- Hypothesize that $V_{t d}$ (and $V_{u b}$) are complex.
- How do we measure the $V_{t d}$ phase, $\arg \left(V_{t d}\right)$?
\rightarrow should use particle interactions that contain $V_{t d}$ like these:

- The $B^{0}-\bar{B}^{0}$ mixing is a useful phenomenon to access $\arg \left(V_{t d}\right)$.

$B^{0}-\bar{B}^{0}$ Coherence

- Just forget about the $B^{0}-\bar{B}^{0}$ mixing.
- When B^{0} and \bar{B}^{0} are pair-produced from the $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ decay, the two B mesons take neither (B^{0}, B^{0}) nor (\bar{B}^{0}, \bar{B}^{0}) state but only the (B^{0}, \bar{B}^{0}) state.

[proof]

$S=1$ boson

$S=0$ bosons
$\Upsilon(4 S)$ is a $S=1$ boson, and B^{0}, \bar{B}^{0} are $S=0$ boson. Because of the angular momentum conservation, the orbital angular momentum L between the two B mesons is $L=1$.

If both of the two B mesons take the same particle state B^{0}, the wavefunction of the system is exchange-
 symmetric of the two B mesons because of the Bose-Einstein statistics. However, the wavefunction must be exchange-antisymmetric of two same particles with $L=1$. These two statements are inconsistent. The same inconsistency is true for the $\bar{B}^{0}-\bar{B}^{0}$ system.

Thence, only the $\left(B^{0}, \bar{B}^{0}\right)$ state is allowed.

$B^{0}-\bar{B}^{0}$ Mixing And $B^{0}-\bar{B}^{0}$ Coherence

The oscillation starts
like $\bar{B}^{0} \rightarrow B^{0} \rightarrow \bar{B}^{0} \ldots$...

- The flavor of the two B mesons can be known only ... $\boldsymbol{B}^{\mathbf{0}}-\bar{B}^{\mathbf{0}}$ mixing stochastically until they decay to some other particles.
- One of the two B mesons B_{1} decays to a flavor specific state. The B_{1} flavor can be known from the decay products.
- The flavor of the other B meson B_{2} at the time of the B_{1}
... $B^{\mathbf{0}}-\bar{B}^{0}$ coherence decay $t=t_{1}$ is opposite to the B_{1} flavor.
- The B_{2} flavor can be known only statistically after t_{1} until it decays to some other particles.
$\ldots B^{0}-\bar{B}^{0}$ mixing

$C P$ Violation in B Decays

I. I. Bigi

A. I. Sanda

Phenomenologist who theoretically developed the measurement procedure of the $C P$ violation in B decays.
$B^{\mathbf{0}}-\bar{B}^{\mathbf{0}}$ Mixing

- A meson initially in the B^{0} state $\left|B^{0}\right\rangle \xrightarrow{\text { after a time } t}\left|B^{0}(t)\right\rangle=\odot\left|B^{0}\right\rangle+\odot\left|B^{0}\right\rangle$
$(\cdot) \neq 1$ and $\otimes \neq 0$ is the essence of the $B^{0}-\bar{B}^{0}$ mixing
- A meson initially in the \bar{B}^{0} state $\left|\bar{B}^{0}\right\rangle \xrightarrow{\text { after a time } t}\left|\bar{B}^{0}(t)\right\rangle=\Omega\left|B^{0}\right\rangle+\rho\left|\bar{B}^{0}\right\rangle$ $\mathbb{L}_{2} \neq 0$ and $\bigcirc \neq 1$ is the essence of the $B^{0}-\bar{B}^{0}$ mixing

How do we express ; etc. as a function of t in general?

- Remember quantum mechanics: discussion on the time propagation of a state \rightarrow discussion on the energy of the state \rightarrow discussion on the mass of the state.
- As J. W. Christenson demonstrated, the $\left|X^{0}\right\rangle$ and $\left|\bar{X}^{0}\right\rangle$ are a $C P$ eigenstate but not a mass eigenstate.
- Relate the CP eigenstate to a mass eigenstates by force.

$B^{\mathbf{0}}-\bar{B}^{\mathbf{0}}$ Mixing

- $|B(t)\rangle=\left(\cdot(t)|B\rangle+\odot(t)\left|\bar{B}^{0}\right\rangle \equiv \alpha(t) \underset{\binom{1}{0}}{\left|B^{0}\right\rangle}+\beta(t)\binom{0}{1}=\binom{\alpha(t)}{\beta(t)}\right.$
- The phenomenological time-dependent Schrödinger equations are:

$$
\begin{aligned}
i \frac{\partial}{\partial t}\binom{\alpha(t)}{\beta(t)}=\mathcal{H}\binom{\alpha(t)}{\beta(t)} \square i \frac{\partial}{\partial t}\binom{\alpha(t)}{\beta(t)} & =\left(M-\frac{i}{2} \Gamma\right)\binom{\alpha(t)}{\beta(t)} \text { X }{ }^{0}, \bar{X}^{0} \text { mass and decay } \\
& \equiv\left(\begin{array}{ll}
M_{11}-i \Gamma_{11} / 2 & M_{12}-i \Gamma_{12} / 2 \\
M_{21}-i \Gamma_{21} / 2 & M_{22}-i \Gamma_{22} / 2
\end{array}\right)\binom{\alpha(t)}{\beta(t)}
\end{aligned}
$$

Because the operators M and Γ are Hermitian, $M_{21}=M_{12}^{*}$ and $\Gamma_{21}=\Gamma_{12}^{*}$.
Then, because of the CPT theorem, $M_{11}=M_{22} \equiv M$ and $\Gamma_{11}=\Gamma_{22} \equiv \Gamma$.

$$
i \frac{\partial}{\partial t}\binom{\alpha(t)}{\beta(t)}=\left(\begin{array}{cc}
M-i \Gamma / 2 & M_{12}-i \Gamma_{12} / 2 \\
M_{12}^{*}-i \Gamma_{12}^{*} / 2 & M-i \Gamma / 2
\end{array}\right)\binom{\alpha(t)}{\beta(t)}
$$

- If $M_{12}-i \Gamma_{12} / 2=M_{12}^{*}-i \Gamma_{12}^{*} / 2=0 \rightarrow$ no $B^{0}-\bar{B}^{0}$ mixing; otherwise, the B^{0} \bar{B}^{0} mixing occurs and $|B(t)\rangle$ and $|\bar{B}(t)\rangle$ are no longer the mass eigenstates.

$B^{\mathbf{0}}-\bar{B}^{\mathbf{0}}$ Mixing

- Let the eigenvectors of $\left(M-\frac{i}{2} \Gamma\right)=\left(\begin{array}{cc}M-i \Gamma / 2 & M_{12}-i \Gamma_{12} / 2 \\ M_{12}^{*}-i \Gamma_{12}^{*} / 2 & M-i \Gamma / 2\end{array}\right)$ and the associated eigenvalues to be $\left|B_{H}\right\rangle, \mu_{H}$ and $\left|B_{L}\right\rangle, \mu_{L}$. These definitions lead

$$
\left|B_{H}(t)\right\rangle=\exp \left(-i \mu_{H} t\right)\left|B_{H}\right\rangle \text { and }\left|B_{L}(t)\right\rangle=\exp \left(-i \mu_{L} t\right)\left|B_{L}\right\rangle .
$$

- On the other hand, by an arithmetic calculation, we obtain

$$
\begin{aligned}
& \left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle, \mu_{H}=M-i \Gamma / 2-\sqrt{\left(M_{12}-i \Gamma_{12} / 2\right)\left(M_{12}^{*}-i \Gamma_{12}^{*} / 2\right)} \text { and } \\
& \left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle, \quad \mu_{L}=M-i \Gamma / 2+\sqrt{\left(M_{12}-i \Gamma_{12} / 2\right)\left(M_{12}^{*}-i \Gamma_{12}^{*} / 2\right)},
\end{aligned}
$$

where $\frac{p}{q}=\sqrt{\frac{M_{12}^{*}-i \Gamma_{12}^{*} / 2}{M_{12}-i \Gamma_{12} / 2}}$ and $|p|^{2}+|q|^{2}=1$.
Additionally, we obtain

$$
\left|B^{0}\right\rangle=\left(\left|B_{L}\right\rangle+\left|B_{H}\right\rangle\right) / 2 p \text { and }\left|\bar{B}^{0}\right\rangle=\left(\left|B_{L}\right\rangle-\left|B_{H}\right\rangle\right) / 2 q .
$$

B^{0}-Meson Decay

- Finally, we obtain

$$
\begin{aligned}
& \left|B^{0}(t)\right\rangle=\frac{1}{2}\left[\left(\exp \left(-i \mu_{L} t\right)+\exp \left(-i \mu_{H} t\right)\right)\left|B^{0}\right\rangle+\frac{q}{p}\left(\exp \left(-i \mu_{L} t\right)-\exp \left(-i \mu_{H} t\right)\right)\left|\bar{B}^{0}\right\rangle\right] \\
& \left|\bar{B}^{0}(t)\right\rangle=\frac{1}{2}\left[\frac{p}{q}\left(\exp \left(-i \mu_{L} t\right)-\exp \left(-i \mu_{H} t\right)\right)\left|B^{0}\right\rangle+\left(\exp \left(-i \mu_{L} t\right)+\exp \left(-i \mu_{H} t\right)\right)\left|\bar{B}^{0}\right\rangle\right]
\end{aligned}
$$

- By defining $f_{ \pm}(t) \equiv \frac{1}{2}\left(\exp \left(-i \mu_{L} t\right) \pm \exp \left(-i \mu_{H} t\right)\right)$ for brevity, we obtain

$$
\left|B^{0}(t)\right\rangle \equiv f_{+}(t)\left|B^{0}\right\rangle+\frac{q}{p} f_{-}(t)\left|\bar{B}^{0}\right\rangle \text { and }\left|\bar{B}^{0}(t)\right\rangle \equiv \frac{p}{q} f_{-}(t)\left|B^{0}\right\rangle+f_{+}(t)\left|\bar{B}^{0}\right\rangle
$$

Application: $B^{0}-\bar{B}^{0}$ Mixing

- By defining $f_{ \pm}(t) \equiv \frac{1}{2}\left(\exp \left(-i \mu_{L} t\right) \pm \exp \left(-i \mu_{H} t\right)\right)$ for brevity, we obtain

$$
\left|B^{0}(t)\right\rangle \equiv f_{+}(t)\left|B^{0}\right\rangle+\frac{q}{p} f_{-}(t)\left|\bar{B}^{0}\right\rangle \text { and }\left|\bar{B}^{0}(t)\right\rangle \equiv \frac{p}{q} f_{-}(t)\left|B^{0}\right\rangle+f_{+}(t)\left|\bar{B}^{0}\right\rangle
$$

- Probability to find the particle in the $\left|B^{0}\right\rangle$ and $\left|\bar{B}^{0}\right\rangle$ states at a time t that was initially in the $\left|B^{0}\right\rangle$ state are

$$
\begin{aligned}
& \left|\left\langle B^{0} \mid B^{0}(t)\right\rangle\right|^{2}=\left|f_{+}(t)\right|^{2}=\frac{1}{2} \exp (-\Gamma t)\left[\cosh \left(\frac{\Delta \Gamma_{d}}{2} t\right)+\cos \left(\Delta m_{d} t\right)\right] \\
& \left|\left\langle\bar{B}^{0} \mid B^{0}(t)\right\rangle\right|^{2}=\left|\frac{q}{p} f_{-}(t)\right|^{2}=\frac{1}{2}\left|\frac{q}{p}\right|^{2} \exp (-\Gamma t)\left[\cosh \left(\frac{\Delta \Gamma_{d}}{2} t\right)-\cos \left(\Delta m_{d} t\right)\right], \text { respectively, }
\end{aligned}
$$

$$
\text { where } m_{L, H} \equiv \mathcal{R e}\left(\mu_{L, H}\right), \Gamma_{L, H} \equiv-2 \operatorname{Im}\left(\mu_{L, H}\right), \Delta m_{d} \equiv m_{H}-m_{L}, \text { and } \Delta \Gamma_{d} \equiv \Gamma_{H}-\Gamma \text {. }
$$

- In a system that the approximations $|q / p| \approx 1$ and $\Delta \Gamma \approx 0$ hold,

$$
\begin{aligned}
& P\left(B^{0} \rightarrow B^{0} ; t\right)=\frac{1}{2} \exp \left(-\Gamma_{d} t\right)\left[1+\cos \left(\Delta m_{d} t\right)\right] \ldots \text { unmixed (same eq. for } \bar{B}^{0} \rightarrow \bar{B}^{0} \text {) } \\
& \left.P\left(B^{0} \rightarrow \bar{B}^{0} ; t\right)=\frac{1}{2} \exp \left(-\Gamma_{d} t\right)\left[1-\cos \left(\Delta m_{d} t\right)\right] \ldots \text { mixed (same eq. for } \bar{B}^{0} \rightarrow B^{0}\right)
\end{aligned}
$$

Application: $\boldsymbol{B}^{\mathbf{0}} \mathbf{-} \overline{\boldsymbol{B}}^{\mathbf{0}}$ Mixing

$$
P_{\text {unmixed }}(t)=\frac{1}{2} \exp \left(-\Gamma_{d} t\right)\left[1+\cos \left(\Delta m_{d} t\right)\right], P_{\text {mixed }}(t)=\frac{1}{2} \exp \left(-\Gamma_{d} t\right)\left[1-\cos \left(\Delta m_{d} t\right)\right]
$$

Again, the $B^{0}-\bar{B}^{0}$ mixing is an independent phenomenon of the $B^{0} \bar{B}^{0}$ pair creation.

Application: $\boldsymbol{B}^{\mathbf{0}} \mathbf{-} \overline{\boldsymbol{B}}^{\mathbf{0}}$ Mixing

$$
\int_{0}^{+\infty} d t \frac{P_{\text {mixed }}(t)}{P_{\text {unmixed }}(t)+P_{\text {mixed }}(t)}=\frac{\Delta m_{d}^{2}}{2\left(\Gamma_{d}^{2}+\Delta m_{d}^{2}\right)} \equiv \chi_{d}
$$

$B^{0}-\bar{B}^{0}$ Mixing $(1986,1987)$

- $B^{0}-\bar{B}^{0}$ mixing: $\chi=\frac{N\left(B^{0} \rightarrow \bar{B}^{0}\right)}{N\left(B^{0} \rightarrow B^{0}\right)+N\left(B^{0} \rightarrow \bar{B}^{0}\right)}$. The $\chi=0$ if no mixing.

$$
N\left(B^{0} \rightarrow B^{0}\right) \ldots \text { unmixed } \quad N\left(B^{0} \rightarrow \bar{B}^{0}\right) \ldots \text { mixed }
$$

Evidence for the $\boldsymbol{B}^{\mathbf{0}} \mathbf{-} \overline{\boldsymbol{B}}^{\mathbf{0}}$ mixing

\bar{B}^{0} pairly-produced with B^{0} from the $e^{+}-e^{-}$ collision by the DORIS II accelerator had changed to B^{0}.

$$
L_{-k^{+} \pi^{-}-\pi^{-}}
$$

$$
\begin{aligned}
& \chi= \frac{N\left(B^{0} \rightarrow \bar{B}^{0}\right)}{N\left(B^{0} \rightarrow B^{0}\right)+N\left(B^{0} \rightarrow \bar{B}^{0}\right)}=0.17 \pm 0.05 \\
& \chi \equiv x^{2} / 2\left(1+x^{2}\right), x \equiv \Delta m_{B^{0}} / \Gamma_{B^{0}} .
\end{aligned}
$$

https://argus-fest.desy.de/e301/e305/wsp_arg_new.pdf

The χ_{d} is sometimes called a time-integrated mixing parameter.

Measurement of Δm_{d} at Belle

Δm_{d} results from Belle II will come soon...

Asymmetry $A(t) \equiv \frac{P_{\text {unmixed }}(t)-P_{\text {mixed }}(t)}{P_{\text {unmixed }}(t)+P_{\text {mixed }}(t)}$
When the effects from the wrong tagging probability and vertex reconstruction resolution are negligible, $A(t)=\cos \Delta m_{d} t$.

$$
\Delta m_{d}=(0.511 \pm 0.005 \pm 0.006) \mathrm{ps}^{-1}
$$

$$
\text { with } 152 \mathrm{M} B \bar{B}
$$

Belle Collaboration, Phys. Rev. D 71, 072003 (2005).

The Δt must be used in the equation above instead of the t. This "misuse" is on purpose to simplify the discussion here. The replacement of the t with the Δt is discussed in the next few pages.

Application: $\boldsymbol{B}^{\mathbf{0}}-\overline{\boldsymbol{B}}^{\mathbf{0}}$ Coherence at Belle (II)

- A critical difference between the $B^{0}-\bar{B}^{0}$ mixing in a general setup and that in the Belle (II) setup: at Belle and Belle II, two B-mesons are pair-produced and they are entangled (i.e.: the two B mesons take only the (B^{0}, \bar{B}^{0}) state until one of them decays).
- The wavefunction of the two-B-meson system $\left|\operatorname{Belle}\left(t_{1}, t_{2}\right)\right\rangle$ at the time of the pair production, $t_{1}=0$ and $t_{2}=0$, is

$$
\left.\left.\checkmark \mid \text { Belle }(0,0)\rangle=\frac{1}{\sqrt{2}}\left(\left|B_{1}^{0} \bar{B}_{2}^{0}\right\rangle-\left|\bar{B}_{1}{ }^{0} B_{2}^{0}\right\rangle\right)\right\rangle \underset{\text { Exchange asymmetric }}{ } \quad \underset{\text { Exchange symmetric }}{ } \quad \underset{\text { Belle }(0,0)\rangle=\frac{1}{\sqrt{2}}\left(\left|B_{1}^{0} \bar{B}_{2}^{0}\right\rangle\right.}{ }\left|\bar{B}_{1}{ }^{0} B_{2}^{0}\right\rangle\right)
$$

- The general wavefunction to observe one B at $t=t_{1}$ and the other at $t=t_{2}$ is

$$
\left|\operatorname{Belle}\left(t_{1}, t_{2}\right)\right\rangle=\frac{1}{\sqrt{2}}\left(\left|B_{1}^{0}\left(t_{1}\right)\right\rangle\left|\bar{B}_{2}^{0}\left(t_{2}\right)\right\rangle-\left|\bar{B}_{1}^{0}\left(t_{1}\right)\right\rangle\left|B_{2}^{0}\left(t_{2}\right)\right\rangle\right)
$$

- By recalling $\left|B^{0}(t)\right\rangle \equiv f_{+}(t)\left|B^{0}\right\rangle+\frac{q}{p} f_{-}(t)\left|\bar{B}^{0}\right\rangle,\left|\bar{B}^{0}(t)\right\rangle \equiv \frac{p}{q} f_{-}(t)\left|B^{0}\right\rangle+f_{+}(t)\left|\bar{B}^{0}\right\rangle$

$$
\begin{aligned}
& \left.\mid \text { Belle }\left(t_{1}, t_{2}\right)\right\rangle=\frac{1}{\sqrt{2}} e^{-\frac{\Gamma}{2}\left(t_{1}+t_{2}\right)} \times \\
& \qquad\left[i \sin \frac{\Delta m_{d}\left(t_{2}-t_{1}\right)}{2}\left(\frac{p}{q}\left|B_{1}^{0} B_{2}^{0}\right\rangle-\frac{q}{p}\left|\bar{B}_{1}^{0} \bar{B}_{2}^{0}\right\rangle\right)+\cos \frac{\Delta m_{d}\left(t_{2}-t_{1}\right)}{2}\left(\left|B_{1}^{0} \bar{B}_{2}^{0}\right\rangle-\left|B_{1}^{0} \bar{B}_{2}^{0}\right\rangle\right)\right]
\end{aligned}
$$

Application: CPV in B Decays at Belle (II)

- \mid Belle $\left.\left(t_{1}, t_{2}\right)\right\rangle=\frac{1}{\sqrt{2}} e^{-\frac{\Gamma}{2}\left(t_{1}+t_{2}\right)} \times$

$$
\left[i \sin \frac{\Delta m_{d}\left(t_{2}-t_{1}\right)}{2}\left(\frac{p}{q}\left|B_{1}^{0} B_{2}^{0}\right\rangle-\frac{q}{p}\left|\bar{B}_{1}^{0} \bar{B}_{2}^{0}\right\rangle\right)+\cos \frac{\Delta m_{d}\left(t_{2}-t_{1}\right)}{2}\left(\left|B_{1}^{0} \bar{B}_{2}^{0}\right\rangle-\left|B_{1}^{0} \bar{B}_{2}^{0}\right\rangle\right)\right]
$$

$$
\begin{aligned}
& \text { - Define the } B \rightarrow f_{C P} \text { decay amplitudes by } \\
& \left\langle f_{C P}\right| \mathcal{H}_{d}\left|B^{0}\right\rangle \equiv \mathcal{A}_{f_{C P}},\left\langle f_{C P}\right| \mathcal{H}_{d}\left|\bar{B}^{0}\right\rangle \equiv \overline{\mathcal{A}}_{f_{C P}}, \text { and } \lambda_{f_{C P}} \equiv \frac{\overline{\mathcal{A}}_{f_{C P}}}{\mathcal{A}_{f_{C P}}} \cdot \frac{q}{p}
\end{aligned}
$$

- Define the flavor-specific B-decay amplitudes by

$$
\begin{aligned}
& \left\langle\ell^{+} D^{-} v_{\ell}\right| \mathcal{H}_{d}\left|B^{0}\right\rangle=\overline{\mathcal{A}}_{\ell^{+}}, \quad\left\langle\ell^{+} D^{-} v_{\ell}\right| \mathcal{H}_{d}\left|\bar{B}^{0}\right\rangle=0 \\
& \left\langle\ell^{-} D^{+} \bar{v}_{\ell}\right| \mathcal{H}_{d}\left|B^{0}\right\rangle=0, \quad\left\langle\ell^{-} D^{+} \bar{v}_{\ell}\right| \mathcal{H}_{d}\left|\bar{B}^{0}\right\rangle=\overline{\mathcal{A}}_{\ell^{-}}
\end{aligned}
$$

- Then, the probability to find a signature for the $\left[B^{0} \bar{B}^{0}\right] \rightarrow\left[\left(\ell^{-} D^{+} \bar{v}_{\ell}\right)_{1}\left(f_{C P}\right)_{2}\right]$ in the Belle (II) detector at the time t_{1} and t_{2}, respectively, and the probability to find a signature for the $\left[B^{0} \bar{B}^{0}\right] \rightarrow\left[\left(\ell^{+} D^{-} v_{\ell}\right)_{1}\left(f_{C P}\right)_{2}\right]$ in the Belle (II) detector at the time t_{1} and t_{2}, respectively, are computed as the ones on the next page.

Application: CPV in B Decays at Belle (II)

- The probability to find a signature for the $\left[B^{0} \bar{B}^{0}\right] \rightarrow\left[\left(\ell^{-} D^{+} \bar{v}_{\ell}\right)_{1}\left(f_{C P}\right)_{2}\right]$ in the Belle (II) detector at the time t_{1} and t_{2}, respectively, is:

$$
\begin{aligned}
& \left\langle\left(\ell^{-} D^{+} \bar{v}_{\ell}\right)_{2}\left(f_{C P}\right)_{1}\right| \mathcal{H}_{d}\left|\operatorname{Belle}\left(t_{1}, t_{2}\right)\right\rangle=\frac{1}{2} e^{-\Gamma\left(t_{1}+t_{2}\right)}\left|\mathcal{A}_{S L}\right|^{2}\left|\mathcal{A}_{f_{C P}}\right|^{2} \times \\
& \quad \times\left[\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right)+\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right)}{2} \cos \left[\Delta m_{d}\left(t_{2}-t_{1}\right)\right]-\jmath m\left(\lambda_{f_{C P}}\right) \sin \left[\Delta m_{d}\left(t_{2}-t_{1}\right)\right]\right]
\end{aligned}
$$

- The probability to find a signature for the $\left[B^{0} \bar{B}^{0}\right] \rightarrow\left[\left(\ell^{+} D^{-} v_{\ell}\right)_{1}\left(f_{C P}\right)_{2}\right]$ in the Belle (II) detector at the time t_{1} and t_{2}, respectively, is:

$$
\begin{aligned}
& \left\langle\left(\ell^{+} D^{-} v_{\ell}\right)_{2}\left(f_{C P}\right)_{1}\right| \mathcal{H}_{d}\left|\operatorname{Belle}\left(t_{1}, t_{2}\right)\right\rangle=\frac{1}{2} e^{-\Gamma\left(t_{1}+t_{2}\right)}\left|\mathcal{A}_{S L}\right|^{2}\left|\mathcal{A}_{f_{C P}}\right|^{2} \times(p / q)^{2} \\
& \quad \times\left[\frac{\left(1+\left|\lambda_{f_{C P}}\right|^{2}\right)-\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right)}{2} \cos \left[\Delta m_{d}\left(t_{2}-t_{1}\right)\right]+\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin \left[\Delta m_{d}\left(t_{2}-t_{1}\right)\right]\right]
\end{aligned}
$$

- By approximating $\left|\mathcal{A}_{f_{C P}} / \overline{\mathcal{A}}_{f_{C P}}\right| \approx 1$ and $|q / p| \approx 1$,

$$
\left\langle\left(\ell^{ \pm} D v\right)_{2}\left(f_{C P}\right)_{1}\right| \mathcal{H}_{d}\left|\operatorname{Belle}\left(t_{1}, t_{2}\right)\right\rangle \propto e^{-\Gamma\left(t_{1}+t_{2}\right)}\left[1 \pm J m\left(\lambda_{f_{C P}}\right) \sin \left[\Delta m_{d}\left(t_{2}-t_{1}\right)\right]\right]
$$

Application: CPV in B Decays at Belle (II)

- The Belle (II) detector cannot measure the absolute time from the paircreation of the two B mesons to their decay \rightarrow absolute time t_{1} or t_{2} cannot be measured, individually. But it can measure the time difference $\Delta t \equiv t_{2}-t_{1}$.
- To account for the ambiguity in t_{1} and t_{2}, apply $\int_{0}^{+\infty} d t_{2} \int_{0}^{+\infty} d t_{1} \delta\left(t_{2}-t_{1}-\Delta t\right)$ to $\left\langle\left(\ell^{ \pm} D v\right)_{2}\left(f_{C P}\right)_{1}\right| \mathcal{H}_{d}\left|\operatorname{Belle}\left(t_{1}, t_{2}\right)\right\rangle$.

Application: CPV in B Decays at Belle (II)

- $\int_{0}^{+\infty} d t_{2} \int_{0}^{+\infty} d t_{t} \delta\left(t_{2}-t_{1}-\Delta t\right)\left\langle\left(\ell^{ \pm} D v\right)_{2}\left(f_{C P}\right)_{1}\right| \mathcal{H}_{d}\left|\operatorname{Belle}\left(t_{1}, t_{2}\right)\right\rangle$
$\propto e^{-\Gamma|\Delta t|}\left(1 \pm \jmath_{m}\left(\lambda_{f_{C P}}\right) \sin \Delta m_{d} \Delta t\right)$.
By replacing the Γ with $\tau_{B^{0}}$ and taking the normalization,

$$
P\left(t ; \ell^{ \pm}\right)=\frac{1}{2 \tau_{B^{0}}} e^{-\frac{|\Delta t|}{\tau_{B^{0}}}}\left(1 \pm \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin \Delta m_{d} \Delta t\right)
$$

- By applying a similar discussion to the $B^{0}-\bar{B}^{0}$ mixing, one obtains

$$
P\left(t ; \ell^{ \pm}\right)=\frac{1}{2 \tau_{B^{0}}} e^{-\frac{|\Delta t|}{\tau_{B^{0}}}}\left(1 \pm \cos \Delta m_{d} \Delta t\right) \quad \begin{aligned}
& + \text { for unmixed } \\
& - \text { for mixed }
\end{aligned}
$$

The Last Piece, $\lambda_{f_{C P}}$

- Assume we use the golden mode for the test of the Kobayashi-Maskawa theory, where $B^{0} \rightarrow J / \psi K_{S}^{0}$ and $\bar{B}^{0} \rightarrow J / \psi K_{S}^{0}$.

- Skipped derivation.
- $K^{0}-\bar{K}^{0}$ mixing is omitted for its small contribution to the B meson system.
- No $V_{t d}$ or $V_{u b}$ included \rightarrow no CKM phase from the decay.

Application: CPV in B Decays at Belle (II)

Since only $V_{t d}$ and $V_{u b}$ are complex, $\lambda_{J / \psi K_{S}^{0}}=\xi_{J / \psi K_{S}^{0}} \cdot e^{-2 i \phi_{1}}$.
$\operatorname{Im}_{m}\left(\lambda_{J / \psi K_{S}^{0}}\right)=-\xi_{J / \psi K_{S}^{0}} \sin 2 \phi_{1}=\sin 2 \phi_{1}$.

$$
P\left(t ; \ell^{ \pm}\right)=\frac{1}{2 \tau_{B^{0}}} e^{-\frac{|\Delta t|}{\tau_{B} 0}}\left(1 \pm \sin 2 \phi_{1} \sin \Delta m_{d} \Delta t\right)
$$

- $I m\left(\lambda_{f_{C P}}\right)$ depends on the $\mathcal{A}_{f_{C P}}$ and $\overline{\mathcal{A}}_{f_{C P}}$, which are determined by the chosen $B^{0}\left(\bar{B}^{0}\right) \rightarrow f_{C P}$ mode. For example, if one chooses $B^{0}\left(\bar{B}^{0}\right) \rightarrow \pi^{+} \pi^{-}$, he/she obtains the $P\left(t ; \ell^{ \pm}\right)$equation with $\sin 2 \phi_{2}$.

Hitchhikers' Summary

Three Types of CP Violation

1. Direct $C P$ violation

Matter-antimatter asymmetry when $\mathcal{A}_{f_{C P}} \neq \overline{\mathcal{A}}_{f_{C P}}$. The decay final state is not necessary a $C P$ eigenstate, which means $\mathcal{A}_{f} \neq \overline{\mathcal{A}}_{\bar{f}}$.

2. Indirect $\boldsymbol{C P}$ violation

Matter-antimatter asymmetry when $|q / p| \neq 1$ while we usually assume $|q / p| \neq 1$ in the B-meson system.
3. Mixing induced $C P$ violation

Measure with the timedependent analysis method

Matter-antimatter asymmetry in the interference between with and without mixing (i.e.: $B^{0} \rightarrow \bar{B}^{0}, \bar{B}^{0} \rightarrow B^{0}$ and $B^{0} \rightarrow B^{0}, \bar{B}^{0} \rightarrow \bar{B}^{0}$, respectively).

That's All.

