

Current development on HEP computing at KIT

Matthias J. Schnepf on behalf of the KIT HEP-Computing team | 3. December 2021

www.kit.edu

- Institute for Experimental Particle Physics (ETP)
 - big Belle II and CMS group
 - Iocal computing resources and access to HPC clusters

- Institute for Experimental Particle Physics (ETP)
 - big Belle II and CMS group
 - Iocal computing resources and access to HPC clusters
- GridKa
 - biggest WLCG Tier-1 that supports the four big LHC experiments
 - Belle II Raw data centers
 - more than
 - 48.000 CPU cores
 - 45 PB disk storage
 - 63 PB on tape

- Institute for Experimental Particle Physics (ETP)
 - big Belle II and CMS group
 - Iocal computing resources and access to HPC clusters
- GridKa
 - biggest WLCG Tier-1 that supports the four big LHC experiments
 - Belle II Raw data centers
 - more than
 - 48.000 CPU cores
 - 45 PB disk storage
 - 63 PB on tape
- TOpAS (Throughput Optimized Analyses System)
 - Iocated at GridKa with 100 Gbit s⁻¹ network
 - about 1PB storage for caching, about 1600 CPUs and 56 GPUs
 - accessible via ETP batch system and GridKa CEs

- Institute for Experimental Particle Physics (ETP)
 - big Belle II and CMS group
 - Iocal computing resources and access to HPC clusters
- GridKa
 - biggest WLCG Tier-1 that supports the four big LHC experiments
 - Belle II Raw data centers
 - more than
 - 48.000 CPU cores
 - 45 PB disk storage
 - 63 PB on tape
- TOpAS (Throughput Optimized Analyses System)
 - Iocated at GridKa with 100 Gbit s⁻¹ network
 - about 1PB storage for caching, about 1600 CPUs and 56 GPUs
 - accessible via ETP batch system and GridKa CEs

ETP for development and GridKa for large scale and production

Computing Resources provided by the "German HEP Cloud"

transparent provisioning of computing resources to specific collaborations, see monitoring
integration of further resources in the future - fully transparent and experiment independent

Computing Resources provided by the "German HEP Cloud"

- transparent provisioning of computing resources to specific collaborations, see monitoring
- integration of further resources in the future fully transparent and experiment independent
- further development in optimization and accounting
- Do you want to be part of the growing ecosystem? Contact us

Computing Resources provided by the "German HEP Cloud"

transparent provisioning of computing resources to specific collaborations, see monitoring (with GPUs)

- integration of further resources in the future fully transparent and experiment independent
- further development in optimization and accounting
- Do you want to be part of the growing ecosystem? Contact us

GPUs for HEP

- more and more end-user analyses use GPUs
- GPUs at KIT
 - 8x NVIDIA V100
 - 24x NVIDIA V100s
 - 24x NVIDIA A100
- already in use by ETP via our batch system
- accessible via GridKa cloud CEs

GPUs for HEP

- more and more end-user analyses use GPUs
- GPUs at KIT
 - 8x NVIDIA V100
 - 24x NVIDIA V100s
 - 24x NVIDIA A100
- already in use by ETP via our batch system
- accessible via GridKa cloud CEs
- available via GridKa to test
 - software provision
 - resource demand (memory, CPUs)
 - performance

Do you have experience with computing and are interested in using GPUs? Contact us

GPUs for HEP

- more and more end-user analyses use GPUs
- GPUs at KIT
 - 8x NVIDIA V100
 - 24x NVIDIA V100s
 - 24x NVIDIA A100
- already in use by ETP via our batch system
- accessible via GridKa cloud CEs
- available via GridKa to test
 - software provision
 - resource demand (memory, CPUs)
 - performance
- make it available via gbasf2 (currently only ideas)

Do you have experience with computing and are interested in using GPUs? Contact us

Storage Situation at Belle II

- DPM storage solution
 - runs out off support
 - small sites need lightweight alternative

Storage Situation at Belle II

- DPM storage solution
 - runs out off support
 - small sites need lightweight alternative
- ⇒ XRootD could be an alternative
 - lightweight storage solution
 - supports XRootD and HTTP(S) protocol (both supported by BelleDIRAC)
 - search volunteers for evaluation and testing
 - provides transparent caching

- jobs run only at sites that provide the requested datasets
 - \Rightarrow long waiting time for jobs
 - \Rightarrow sites with special hardware need a copy of datasets

- jobs run only at sites that provide the requested datasets
 - \Rightarrow long waiting time for jobs
 - \Rightarrow sites with special hardware need a copy of datasets
- additional copy of datasets via caching (automated copy and cleanup)
- integration into DIRAC currently in development

- jobs run only at sites that provide the requested datasets
 - \Rightarrow long waiting time for jobs
 - \Rightarrow sites with special hardware need a copy of datasets
- additional copy of datasets via caching (automated copy and cleanup)
- integration into DIRAC currently in development

read files on demand from specified sites

- jobs run only at sites that provide the requested datasets
 - \Rightarrow long waiting time for jobs
 - \Rightarrow sites with special hardware need a copy of datasets
- additional copy of datasets via caching (automated copy and cleanup)
- integration into DIRAC currently in development

- read files on demand from specified sites
- prefetching datasets to the cache before jobs access

Current Status of Caching at KIT

- Moritz Bauer is working on it as part of his PhD
- TOpAS cluster provides resources to Belle II via LCG.KIT-TARDIS.de
- TOpAS provides caching server and cache space (about 400 TB)
- TOpAS nodes are configured for transparent caching
- file transfer monitoring at caching server provides statistic about access patterns
- future steps
 - handle special XRootD request from DIRAC at caching server, see https://github.com/xrootd/xrootd/issues/1555
 - enable caching at other clusters of LCG.KIT-TARDIS.de
 - test interaction with RUCIO
 - prefetching of data

German HEP Cloud and Future

German HEP Cloud and Future

Are you interested in one of these topics? Do you want to join the community? Mail to: matterminers@lists.kit.edu

Meta-Monitoring: HappyFace

- one site to provide monitoring information from different sources
 - Grafana
 - dCache
 - SAM tests
 - HammerCloud
 - ...
- marks issues
- provides history
- KIT CMS group use it to monitor GridKa happyface4.etp.kit.edu will be moved to happyface.etp.kit.edu
- will be available on GitHub
- can be adapted for Belle II

Summary

- provisioning of computing resources from partners
 - thanks for the excellent cooperation
 - further optimizations planned
 - ready to support additional sites
- storage at Belle II
 - evaluation of XRootD as a lightweight storage solution is welcome
 - KIT tests caching solution via XRootD
- Meta-Monitoring via HappyFace
- Feel free to contact me if you are interested in one of these points: matthias.schnepf@kit.edu

Additional Resources for HEP

- HEP dedicated computing resources
 - institute clusters
 - Grid sites
- resources that are not designed for HEP (opportunistic resources) can be used
 - cloud providers
 - non-HEP Grid sites
 - HPC clusters
 - institute clusters
 - desktop PCs
 - ...

challenges

- software environments provisioning
- dynamic integration
- transparent usage

Institute Clusters

CentOS

🕂 ubuntu

Cloud Providers

Integration of Resources

- dynamic integration via drones (virtual machine, container, batch job) into OBS
- HEP software environment provided by virtualization and container technology

Integration of Resources

- dynamic integration via drones (virtual machine, container, batch job) into OBS
- HEP software environment provided by virtualization and container technology

How many resources of which type are needed at which provider?

Resource Management: COBaID & TARDIS

Ioad balancing daemon COBalD (COBalD - the Opportunistic Balancing Daemon)

life cycle management TARDIS (Transparent Adaptive Resource Dynamic Integration System)

German HEP Cloud Provided Resources

Used CPU Cores per Provider

up to 17000 CPU cores from 7 providers

German HEP Cloud Provided Resources

up to 17000 CPU cores from 7 providers

Provided Resources

Used CPU Cores per Provider

up to 17000 CPU cores provided by

Provided Resources

up to 17000 CPU cores provided by

What We Provide

- COBalD & TARDIS
 - https://github.com/MatterMiners/cobald
 - https://github.com/MatterMiners/tardis
- help to setup OBS or integrate site
 - hands on sessions (integration of C2PAP cluster Munich within 4h)
- puppet module
 - https://github.com/unibonn/puppet-cobald
- wlcg-wn container
 - https://hub.docker.com/r/matterminers/wlcg-wn
 - https://github.com/MatterMiners/container-stacks/blob/main/wlcg-wn

Generalized Pilot Concept

- pilot concept
 - placeholder job allocates resources
 - worker node instance of an Overlay Batch System (OBS) starts payload jobs inside the pilot job
 - requires software environment
- generalized pilot concept ⇒ drone concept
 - resource allocation as
 - batch job
 - virtual machine
 - container
 - provides full Grid software environment
 - drone/pilot/job can run inside a drone

Minimal Setup

Grid Site

- standard Grid site services
 - CE
 - OBS for resources
- provide performant SE and outgoing network
- computing resource provider
 - accessible via HTCondor, Slurm, OpenStack, ...
 - virtualization or container with enables userspace
- COBalD/TARDIS instance
 - lightweight multiple instances fit on one VM
 - needs just python and resource access
 - instances can be run by Grid site, resource provider, and third party

Provided Resources

Used CPU Cores per Collaboration

- used by several collaborations
- up to 17.400 CPU cores integrated

Supported Providers

- adapter to interact with provider
- providers
 - HTCondor
 - Moab
 - Slurm
 - CloudStack
 - OpenStack
 - Kubernetes
- further developments are welcome

Pilot inside a Drone

UNIVERSITÄT BONN JOB STRUCTURE @ U BONN

- Nested structure
- BAF containers to decouple cluster operation from user requirements (convenient for operators)
- ATLAS containers to reduce site requirements (convenient for ATLAS)
- ATLAS pilots to improve throughput of ATLAS production system

BAF HTCondor Job

e cluster ements e site for roughput n

Talk: Opportunistic Resource Mangement with COBalD/TARDIS at U Bonn from Peter Wienemann at the IDT-UM Meeting 30. Sep. 2019: https://indico.physik.uni-muenchen.de/event/22/

HTCondor Submit file for GPUs at GridKa

executable = test.sh universe = grid arid resource = condor cloud-htcondor-ce-2-kit.gridka.de cloud-htcondor-ce-2-kit.gridka.de:9619 request_cpus = 8 arguments = foo request_gpus = 1 request_memory = 14000 should transfer files = YES when to transfer output = ON EXIT x509userproxy = /tmp/x509up_USERID aueue 1

- data locality vs. dynamic resources
- maximal throughput for jobs by a combination of caching and read from remote storage

- data locality vs. dynamic resources
- maximal throughput for jobs by a combination of caching and read from remote storage
- caching design studies
 - cache only files from which jobs benefit
 - coordinate caching
 - data location aware job scheduling
 - coordinate data placement
 - simulation to study different scenarios and settings

- data locality vs. dynamic resources
- maximal throughput for jobs by a combination of caching and read from remote storage
- caching design studies
 - cache only files from which jobs benefit
 - coordinate caching
 - data location aware job scheduling
 - coordinate data placement
 - simulation to study different scenarios and settings
- integration into experiment Grid infrastructure
 - alternative to full storage for small Grid sites?
 - Grid job scheduler aware of cached data
 - interesting for smaller collaborations such as Belle II

- data locality vs. dynamic resources
- maximal throughput for jobs by a combination of caching and read from remote storage
- caching design studies
 - cache only files from which jobs benefit
 - coordinate caching
 - data location aware job scheduling
 - coordinate data placement
 - simulation to study different scenarios and settings
- integration into experiment Grid infrastructure
 - alternative to full storage for small Grid sites?
 - Grid job scheduler aware of cached data
 - interesting for smaller collaborations such as Belle II
- Are you interested in caching? Contact us

Data Access in Distributed Systems

- not all providers have permanent HEP storage
- \Rightarrow read and write from remote storage
- limited network bandwidth between computing resources and remote storage

Data Access in Distributed Systems

- not all providers have permanent HEP storage
- \Rightarrow read and write from remote storage
- limited network bandwidth between computing resources and remote storage
- most resource providers have local storage
- ⇒ caches at providers can reduce external network traffic

Data Access in Distributed Systems

- not all providers have permanent HEP storage
- \Rightarrow read and write from remote storage
- limited network bandwidth between computing resources and remote storage
- most resource providers have local storage
- ⇒ caches at providers can reduce external network traffic
- more complex in a distributed environment

