Recent Theory Developments in Flavor Physics

Belle II Germany Meeting – Munich – 19/09/2022

Méril Reboud

Technische Universität München

Introduction

Two main experimental approaches to go **beyond the Standard Model** at Belle II:

Direct measurements:

- Dark Searches
- Light Higgs
- Lepton Flavor violation
- ...

SM rates = 0

NP rates very small

Indirect measurements:

- CKM
- CP-violation
- Lepton Flavor Universality Violation
- Charm physics
- Spectroscopy

- •••

SM rates are usually measurable NP rates are small

I focus on **recent developments in B physics** (i.e. all citations are to be understood as "plus references therein"):

1) Semileptonic decays

- 2) Nonleptonic decays
- 3) Rare leptonic decays

1) Semileptonic decays and the CKM

•

Main source of uncertainties

- Tree-level process mediated by the weak interaction
- As usual, the theory is simple with **quarks**...

Main source of uncertainties

• Tree-level process mediated by the weak interaction

 \bar{B}

- As usual, the theory is simple with **quarks**...
- ...but we observe hadrons!
- \rightarrow We have to **deal with QCD** (at different scales):
 - Factorize the **non-perturbative quantities** and use:
 - Calculation: Lattice, LCSR...
 - Measures

 $\bar{\nu}_{\ell}$

 \bar{M}

Per lor

Inclusive |V_{cb}|: state-of-the-art

Inclusive |V_{cb}|: state-of-the-art

• Continuously improved calculation:

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi} \right)^3 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)} \right) + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)} \right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi} \right)) + \mathcal{O} \left(\frac{1}{m_b^4} \right) + \cdots \right)$$
• Latest update:

$$|V_{cb}| = 42.16(30)_{th}(32)_{exp}(25)_{\Gamma} \ 10^{-3}$$

[Bordone, Capdevila, Gambino, '21]

Inclusive |V_{cb}|: state-of-the-art

• Continuously improved calculation:

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi}\right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi}\right)^3 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)}\right) + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)}\right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi}\right)) + \mathcal{O}\left(\frac{1}{m_b^4}\right) + \cdots\right)$$
• Latest update:

$$|V_{cb}| = 42.16(30)_{th}(32)_{exp}(25)_{\Gamma} \ 10^{-3}$$
[Bordone, Capdevila, Gambino, '21]

 $|V_{cb}| = (41.69 \pm 0.59|_{\text{fit}} \pm 0.23|_{\text{h.o.}}) \cdot 10^{-3}$ [Bernlochner et al., '22]

[see also Martinelli, Simula, Vittorio, '22]

Gambino, '21]

Lattice $B_{(s)} \rightarrow D_{(s)}^*$

- First lattice QCD estimations of B_(s) → D_(s)* form-factors at non-zero recoil! [HPQCD, '21][FNAL/MILC, '21]
- Results are in **agreement with HQE** [Bernlochner *et al.*, '22][Bordone, Gubernari, Jung, van Dyk, '20]

Lattice $B_{(s)} \rightarrow D_{(s)}^*$

- First lattice QCD estimations of B_(s) → D_(s)* form-factors at non-zero recoil! [HPQCD, '21][FNAL/MILC, '21]
- Results are in **agreement with HQE** [Bernlochner *et al.*, '22][Bordone, Gubernari, Jung, van Dyk, '20]
 - \rightarrow Extraction of **exclusive** |Vcb|:

 $|V_{cb}| = (38.40 \pm 0.74) \times 10^{-3}.$

The exclusive vs inclusive tension (~2σ) remains

→ Not NP friendly [Jung, Straub, '18]

Lattice $B_{(s)} \rightarrow D_{(s)}^*$

- First lattice QCD estimations of B
 (s) → D(s)* form-factors at non-zero recoil! [HPQCD, '21][FNAL/MILC, '21]
- Results are in agreement with HQE [Bernlochner *et al.*, '22][Bordone, Gubernari, / Jung, van Dyk, '20]
 - \rightarrow Extraction of **exclusive** |Vcb|:

 $|V_{cb}| = (38.40 \pm 0.74) \times 10^{-3}.$

The exclusive vs inclusive tension (~2σ) remains

→ Not NP friendly [Jung, Straub, '18]

 \rightarrow Additional cross-check for the test of lepton flavor universality

$$R(D^*) = 0.249(3)$$
 $R(D^*)_{\text{Lat}} = 0.265 \pm 0.013.$

2) Nonleptonic decays and CP asymmetries

Theory main approaches

- QCD Factorization: Separation of scales in the amplitude, expansion in α_{s} and Λ_{QCD}/m_{b} :
 - Computing the next order in α_s is doable but increasingly hard
 - However already the NLO in Λ_{QCD}/m_b requires another framework \rightarrow 10-20% accuracy
 - Very active topic [Beneke et al, '20 & '21][Lü et al, '22]
 [Chaï et al, '22] + ...

Theory main approaches

- QCD Factorization: Separation of scales in the amplitude, expansion in α_{s} and Λ_{QCD}/m_{b} :
 - Computing the next order in α_s is doable but increasingly hard
 - However already the NLO in Λ_{QCD}/m_b requires another framework \rightarrow 10-20% accuracy
 - Very active topic [Beneke et al, '20 & '21][Lü et al, '22]
 [Chaï et al, '22] + ...
- **SU(3) symmetry**: Relates the decay channel to reduce the number of independent parameters:
 - Difficult implementation of flavour breaking effects
 - Approaches can be combined! [Huber, Tetlalmatzi-Xolocotzi, '21]

Puzzles in nonleptonic decays

- $B \rightarrow K\pi$
 - CP asymmetry measured larger than predicted
 - Theoretically challenging [Bell et al., '20]
- $B \rightarrow D^{(*)}K$ and $B_s \rightarrow D_s^{(*)}\pi$
 - "Cleaner": colour-allowed tree decays only
 - Latest update shows a 4σ deviation with respect to data [Bordone *et al.*, '20]
 - Hardly due to QED [Beneke et al., '21]
 - Hardly explained by NP [Endo, Iguro, Mishima, '21] [Bordone, Greljo, Marzocca, '21]
- Belle II can measure more of these modes!

Form-factors in b \rightarrow sll

Predictions based on:

- Lattice QCD calculations (on the entire q^2 range for $B \rightarrow K!$ [HPQCD, '22])
- Light-cone sum rules estimates [Khodjamirian, Rusov, '17][Gubernari et al. '18 & '20]
- **Controlled** and **improvable uncertainties** due to **dispersive bounds** [Gubernari, MR, van Dyk, Virto '22]

$b \rightarrow s\ell\ell$ anomalies

- Tension increased in the "non-ratio" observables see also [Buras '22]
- Consistent new physics pattern
- Belle already gave very promising results

$b \rightarrow s\ell\ell$ wishlist

- Improve on $B \rightarrow K^{(*)} \ell \ell$ angular analysis, branching ratios...
 - Reconstruction of neutrals \rightarrow high q²
 - Electron and tau channels!
- $B \rightarrow K^{(*)}vv$
 - Theoretically very clean (limited by the form-factors and CKM)
 - Theoretically very well motivated
- **LFV** modes $B \rightarrow K^{(*)} \ell \ell'$

$b \rightarrow s\ell\ell$ wishlist

- Improve on $B \rightarrow K^{(*)} \ell \ell$ angular analysis, branching ratios...
 - Reconstruction of neutrals \rightarrow high q²
 - Electron and tau channels!
- $B \rightarrow K^{(*)}vv$
 - Theoretically very clean (limited by the form-factors and CKM)
 - Theoretically very well motivated
- **LFV** modes $B \rightarrow K^{(*)} \ell \ell'$
- Inclusive $B \to X_s \ell \ell$

Conclusion

- Belle II is in a leading position to improve on many puzzles, **both directly and indirectly**.
- I restricted this talk to B-physics, but there have been a lot of theoretical interest in
 - Charm physics
 - Tau decays
 - Quarkonium physics
 - Dark/Invisible searches

Thanks!

Backup

Bottom-up approach

Top-down constraints

The CKM triangle

- > 20 years of experimental and theory efforts
- The pulls are more or less stable
- Can it hold 10 other years?

