Tracking Overview

Where we stand – and where we want to go

Basically running stable

Christian Wessel Belle II Germany FSP Meeting 19th to 21st of September 2022

HELMHOLTZ

- Find all tracks within the detector
 - From interesting events (Y(4S), continuum, tau, DM searches, ...)

- Find all tracks within the detector
 - From interesting events (Y(4S), continuum, tau, DM searches, ...)
 - But also beam backgrounds \rightarrow "fakes" (we don't want these, but they are there)

- Find all tracks within the detector
 - From interesting events (Y(4S), continuum, tau, DM searches, ...)
 - But also beam backgrounds \rightarrow "fakes" (we don't want these, but they are there)
- Fit these tracks and extract track parameters
 - Phi, Omega, d0, z0, lambda = 90° thetr - Vertex position, momentum, charge $y = \frac{1}{x} \frac{q_0}{q_0}$ IP POCA

- Find all tracks within the detector
 - From interesting events (Y(4S), continuum, tau, DM searches, ...)
 - But also beam backgrounds \rightarrow "fakes" (we don't want these, but they are there)
- Fit these tracks and extract track parameters
 - Phi, Omega, d0, z0, lambda = 90° theta
 - Vertex position, momentum, charge
- But HOW?

Tracking in Belle II

Tracking Performance in Belle II with the full Chain

Basically running stable

Issues in Tracking – Performance

Fake and clone tracks

- Fake tracks are tracks without MC counterpart based on their hit content
 - Random combinations of hits
 - Actual tracks from background processes,
 e.g. low angle (very fwd / bwd) e+e- scattering
 - We don't want either
- Clone tracks are (parts of) tracks that are found multiple times
 - Curling tracks where different parts are not matched severe issue around lambda = 0°
 - Tracks where CDC and VXD part are not matched \rightarrow can happen anywhere in the tracking volume

Tracks with displaced vertices

- Tracking performance significantly degrades for tracks that aren't from the origin
 - K_{s}^{0} daughters, DM decay particles, decays in flight

Slow pions from D* decays

 Slow pions are hard to find: multiple scattering and energy loss – improvement in efficiency will improve D* efficiency

Issues in Tracking – Software

Long execution time

- Several track **finding** algorithms take a long time per event
 - Potentially limits maximum HLT rate
 - Either reduce execution time, or build larger HLT (or with more modern hardware)
 - For optimisation: deep dive into tracking C++ code
 - Change tracking chain: SVD to CDC?
 - Start with SVD track finding end extrapolate outwards
 - Limiting factor at the moment: SVD-To-CDC-CKF performance
- Track **fitting** is slow
 - We rely on the the Deterministic Annealing Filter (DAF) from GenFit
 - Executed multiple times par event at multiple stages
 - Improve or replace GenFit both is difficult

Issues in Tracking – Software

Long execution time

- Several track **finding** algorithms take a long time per event
 - Potentially limits maximum HLT rate
 - Either reduce execution time, or build larger HLT (or with more modern hardware)
 - For optimisation: deep dive into tracking C++ code
 - Change tracking chain: SVD to CDC?
 - Start with SVD track finding end extrapolate outwards
 - Limiting factor at the moment: SVD-To-CDC-CKF performance
- Track **fitting** is slow
 - We rely on the the Deterministic Annealing Filter (DAF) from GenFit
 - Executed multiple times par event at multiple stages
 - Improve or replace GenFit both is difficult

Summary

- Tracking generally is in a good shape, especially physics performance wise but we need to prepare for the future
 - Unknown background rates and HLT throughput
 - Unknown amount of future HLT resources (= CPU types, RAM (speed and amount), ...)
- Improve execution time for both track finding and track fitting
 - Important for both HLT and offline reproduction and MC production
 - Refactoring of some core parts necessary (CDC track finding, GenFit)
- Reduce fake and clone rate
 - Merge clone tracks and avoid fake tracks or tag them accordingly
 - Hard to distinguish fake and clone tracks on data w/o MC information
 - These likely will involve MVAs and not so much deep dive into the code
- You can search on Jira BII software for keyword "tracking", or in B2TRACKING for open tasks

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY Christian Wessel Belle II christian.wessel@desy.de

www.desy.de