
Sviatoslav BILOKIN
LMU München

Overview of Systematics framework
Repository Documentation

KEKCC: /group/belle2/dataprod/Systematics/

https://stash.desy.de/projects/B2PP/repos/systematic_corrections_framework/browse
https://syscorrfw.readthedocs.io/

Introduction
● We are working on a framework that should unify and

automate computation of systematic uncertainties
○ Automation is needed since the production of correction weights is

a repetitive task for every data or MC processing
○ The analysts should be free to choose their own parameters for

the corrections
○ The ntuples for the common performance modes should be

available for everyone in a conventional format
○ Largely inspired by LHCb PIDCalib framework.

● Our framework works with the following modes:
○ D*+ → [D0 → K- π+]π+ for K/π ID
○ Λ0 → pπ- for p/π ID
○ KS → π+π- for π ID
○ [τ → 3 π ν] [τ → l νν] for lepton ID

● Fit mass distributions for each weighted performance mode
and compute sWeights and signal-like histograms

○ Compute efficiencies, ROC curves, and data/MC weights, etc.

2

[kurzgesagt]

https://arxiv.org/pdf/1803.00824.pdf

Ntuple production workflow for Weighted models

Systematics
skimming job

GRID KEKCC

Run main ntuple production
Write down all necessary variables
PID, cosTheta, p, nTracks,... + binned M

Supports multiple projects submission

Fit distributions
● For weighted

studies only
● Binned mass fit
● RooFit or zFit options
● Compute sWeights

Merge
ntuples

User scripts

3

(manual)

● Based on b2luigi with gbasf2 support
○ Many thanks to the developers!

Local DB

Create
benchmark
distributions

Merged ntuples w/ sWeights

https://b2luigi.readthedocs.io/en/stable/

Framework mass fitting

● Mass fits for HadronID studies have been significantly improved
○ Reduced low-multiplicity background and improved signal shape

● The mass fit is used to produce sWeights for background subtraction
● In development:

○ J/ψ → μ+μ-/e+e- tag & probe, weighted study
○ e+e- → μ+μ-γ tag & probe, unweighted study

4

D+ → [D0 → K- π+] π+ Λ0 → p+π-KS → π+π-

Ntuple production workflow for Weighted studies
● Create settings.json configuration file:

● Run Dataset Searcher and write down the LPNs to
a .list file

● Create a workflow configuration file
● Launch command:

○ python3 -m syscorrfw
● The final weighted ntuples contain 2 sWeights

columns:
○ A nominal column and a systematic one
○ Enables computation of systematic uncertainties

5

{
 "gbasf2_install_directory" : "~/gbasf2_install" ,
 "gbasf2_print_status_updates" : true,
 "gbasf2_max_retries" : 5,
 "gbasf2_cputime" : 5,
 "gbasf2_release" :"release-05-00-00" ,
 "gbasf2_download_logs" : false,
 "particleid_tasks" : "pid_task_list.yaml"
}

=================================
Hadron ID task submission file
================================
-
 path: "my_lpns.list"
 proc: "bucket14"
 short_name: "Dst_b14"
 model: "Dst"
 cms_energy: "4S"

-
 path: "my_lpns.list"
 proc: "bucket14"
 short_name: "L0_b14"
 model: "Lambda0"
 cms_energy: "4S"

Fixed cut weights workflow
● This new workflow produces data/MC correction

tables which are suitable for
ParticleWeighting module and PIDVar

● Features:
○ Compact configuration file
○ Any number of efficiency cuts on global and/or

binary Hadron ID
○ Tables can have any dimensionality and binning
○ Arbitrary preselection cuts
○ kaonID and protonID weights can be produced in

parallel
○ Documentation is online

● Systematic uncertainties are available
● TODO:

○ Create a possibility to automatically upload the
weights to CDB

6

● Launch command:
○ python3 -m syscorrfw -w fixed_weights

=====================================
Hadron ID weight configuration file
=====================================
weight_dir: 'fixed_weights/'
remove_tmp_files: True
weight_cfg_list:
-
 prefix_name: Rdtmc_v1
 efficiency_particle_type: 'K'
 fakerate_particle_type: 'pi'
 binning: [[0.5, 2.5, 4.5],

[-0.8, 0.2, 0.9563]]
 track_variables: ["p", "cosTheta"]
 cuts: ["kaonID > 0.2", "kaonID > 0.8"]
 precuts: ["", "charge > 0", "charge < 0"]
 mc_proc_query: ["MC14ri_1"]
 data_proc_query: ["proc12e7"]

https://syscorrfw.readthedocs.io/en/latest/weights.html

User scripts
● The script folder at KEKCC:

○ systematic_corrections_framework/scripts/
● Physics analysis scripts:

○ Data/MC weights weight_table.py
○ Multitrack calibration perform_multitrack_calibration.py
○ KDE PID fit perform_pid_fit.py

● Performance scripts:
○ Efficiency table efficiency_table.py
○ ROC curve id_vs_misid_curve.py
○ Histogram plot_distribution.py
○ Result combiner script process_tables.py

● Support scripts:
○ Show ntuple DB content show_db_content.py
○ Print variables show_variables.py

● There is no need to install the framework to run them
● User scripts can be launched in the following ways:

○ Command line
○ In the IPython mode

Useful for workflow management,
e.g. snakemake, b2luigi

7

Interaction with PIDVar
● One can produce the weights in a notebook and

immediately apply them to MC ntuple
○ The data/MC ratios converted into weight table

format via create_weights()
● The application of the weights is done using

PIDVar framework
○ Requires efficiency and fake rate weights
○ Provides uncertainties on MC ntuples

● The weight tables from the framework need to
be adjusted for PIDVar

○ E.g. renaming columns, converting column
values, etc.

● Tutorial is online
● It is strongly recommended to save the weight

tables for the analysis reproducibility

8

https://syscorrfw.readthedocs.io/en/latest/particleid_weight_production.html

Multidimensional PID Fit
● An alternative to the reweighting of the histograms
● One can fit real data PID as function of (p,cosθ,...)

and sample from it using MC (p,cosθ,...)
○ Sampled variable on MC would be data-like PID
○ Implemented in LHCb
○ Free choice of cut values by the analysts
○ Much more granularity than in the weight tables

■ e.g. 200 bins for PID, 100 bins for (p, cosθ,...)
○ Sampled variable can be used in ML algorithms

● Implemented using LHCb KDE Meerkat library
● Free choice of the fit dimensionality and the variables
● The output of the script is saved as ROOT file
● Tutorial is online

9

https://meerkat.hepforge.org/
https://syscorrfw.readthedocs.io/en/latest/fit_pdf_tutorial.html

PID resampling
● The ROOT files from the PID KDE fit are

used to sample the data-like PID on MC
● The resampled PID on MC ntuples will have

data-like efficiency and fake rates as well as
realistic profiles

● First validation studies have been performed
● Tutorial is online
● Coming soon™:

○ Systematic uncertainties for the method
○ Instead of resampling one can transform MC

PID and preserve the 1st order of
correlations

○ Upload output ROOT files to CDB
○ Create basf2 module that can sample or

transform MC PID during runtime

10

https://syscorrfw.readthedocs.io/en/latest/pid_resample_tutorial.html

Cheatsheet
● Documentation: link
● Confluence: link
● Git repository: link
● Bamboo: link

● Ntuples on KEKCC:
○ /group/belle2/dataprod/Systematics/production/

● Ntuple structure:
○ Follows the vu.create_aliases_for_selected() pattern

● Available datasets can be shown by scripts/show_db_content.py:
○ proc12 + prompt up to bucket25, sproc2, 3
○ 2 blocks of MC14ri
○ MC14rd exp7-10 + buckets (being updated)

● Available variables can be shown by scripts/show_variables.py:
○ Now includes Charged BDT and track isolation variables

11

https://syscorrfw.readthedocs.io/en/latest/index.html
https://confluence.desy.de/display/BI/Development+of+Systematic+Uncertainty+Framework
https://stash.desy.de/projects/B2PP/repos/systematic_corrections_framework/browse
https://bamboo.desy.de/browse/B2-SYS/

Summary
● This framework is designed to automate the

performance studies and computation of systematic
weights associated to PID

● Progress so far:
✓ Added a possibility to integrate other types of studies
✓ Processed proc12 + all buckets up to 25th + s-proc’s
✓ Introduced PID KDE Fit in LHCb fashion
➢ Integration of Lepton ID modes is in progress
☒ Create meta-variables in basf2 fashion
☒ Duplicate dataset to other servers, e.g. BNL or DESY
☒ Integration with B2Production framework
☒ Integration with basf2 and b2conditiondb

 Systematic Corrections Framework

 syscorrfw.readthedocs.io software-systematic-framework@belle2.org

 frank.meier@duke.edu
 s.bilokin@lmu.de dicanto@bnl.gov

 #systematic-framework on chat.belle2.org

12

● Please contact us if you want to
contribute:
➢ Framework development
➢ Producing ntuples and testing new

features
➢ Integrating your performance studies
➢ Validation of weights and procedures

https://syscorrfw.readthedocs.io

Thank you!

13

Model overview
● The KS → π

+π- has been integrated into the
framework:

○ [BELLE2-NOTE-TE-2019-024]
● PDF:

○ Signal: RooJohnson + RooGaussian
○ Bkg: 3rd order Chebychev

● Work to improve the PDF model is ongoing

14Sanjeeda Das, Angelo Di Canto

● The Λ0 → pπ- has been overhauled
● PDF:

○ Signal: RooJohnson
○ Bkg: 2rd order Chebychev

● Ntuples have been reprocessed already

Andres Ramires

User scripts: [BIIPERF-143]

● Transforming / resampling of the MC PID distributions [Anton’s talk last B2GM]
● Usage of an old external C++ library for KDE fitting slows down the development

○ Looking for alternatives in python: N-dimensional KDE fit with weight and custom kernel support, e.g. KDEpy
● It should be possible to integrate the algorithm into basf2 and b2conditionsdb, help needed

15

[1803.00824]

Anton de la Fuente, Angelo Di Canto

Data
MC

Refit workflow for HadronID
● This new workflow reproduces sWeights in

already existing ntuples in case if a PDF model
has been updated

● Features:
○ Compact configuration file
○ One can select a particular model to update
○ The ntuple files will acquire a new suffix and their

sWeights column will be replaced
○ Workflow will also reproduce all benchmark plots

● Will be applied when we will update Lambda0 fit

16

● Launch command:
○ python3 -m syscorrfw -w refit

=====================================
Hadron ID refit configuration file
=====================================
old_suffix: ""

new_suffix: "_v1"

models: ["Lambda0", "Dst"]

Ntuple production workflow for HadronID
● Path on KEKCC:

/group/belle2/dataprod/Systematics/
● Ntuples are saved in the

production/{proc}/ directories
○ vu.create_aliases_for_selected()

pattern
● After every run the plots are saved to

the production/plots/ directory
● Fitted function and the fit results are

saved to production/fit_results/
directory

● Validation or benchmark plots are saved
as json to production/validation/

17

How to add a new hadron ID study

● Add information for the ntuple production

● Returns dict of skimmed list name,
selection cuts and list of variables

● One can use variable manager to create
aliases

●
● Add PDF model for fitting

● Has to return tuple of PDF and mass
variable

18

def get_ntuple_model (self) -> dict:
 result = {'list_name' : 'X:p_list_name' ,
 'selection_cuts' : 'E > 0'}
 result['variables'] = ['M', 'pionID']
 result['hist'] = [('M', 100, 1.75, 2.0)]
 result['hist_2d'] = []
 return result

def get_roofit_pdf_model (self, yields: tuple, var_stash: list) -> tuple:
 mass = ROOT.RooRealVar('M', 'm_{inv} GeV/c', 1.75, 2.)
 # Signal PDF:
 mean = ROOT.RooRealVar('mean', 'mean', 1.8, 1.75, 2.)
 sigma = ROOT.RooRealVar('sigma', 'sigma', 0.01, 0.001, 1.)
 signal = ROOT.RooGaussian('signal', 'signal', mass, mean, sigma)
 # Background PDF:
 par = ROOT.RooRealVar('bkg_par', 'bkg_par', -3, -10, 0)
 bkg = ROOT.RooExponential('bkg', 'bkg', mass, par)
 # Save variables:
 addToStash(var_stash, [mean, sigma, signal, par, bkg])
 # Combined model:
 model = ROOT.RooAddPdf('model', 'model', ROOT.RooArgList(signal, bkg),
 ROOT .RooArgList(*yields))
 return model, mass

1. Create skimming for the physics mode
2. Create PID model class:

class MyExamplePIDModel(PIDModelBase):
 def __init__(self):
 self.m_version = 0.01
 self.m_mc_truth_variable = 'B0_isSignal'

D* K/π ID study
● D* reconstruction note:

○ S. Sandilya BELLE2-NOTE-PH-2019-048
● Default cuts in the framework

○ impact parameters dr < 2, abs(dz) < 4 and
CDC hits > 20;

○ pD*
cms > 2.5 GeV;

○ 0.1439 GeV < ΔM < 0.1469 GeV;
○ 1.8 GeV < M(D0) < 1.95 GeV.

● Model for M(D0)
○ Signal: two Gaussian functions with a common

mean;
○ Background: the second order Chebychev

function.
● The full set of global PID variables (pionID,

kaonID, etc) and the likelihoods for each
mass hypothesis and detector is stored.

19
* These plots are generated in the jupyter notebook rather than the framework.Chaoyi Lyu, Angelo Di Canto

Λ0 p/π ID study
● Λ reconstruction note

○ B. Scavino BN-2020-027
● Two different skim types

○ Analysis skim: 0.6 < pp /pΛ < 1.0,
flightSignificance > 3.0, protonID > 0.1,
cos(α) > 0.99

○ HLT skim: flightSignificance > 10.0,
(pp − pπ)/(pp + pπ) > 0.41

○ Both skims slightly different than our
selection, analysis skim is similar to Todd’s
studies: nCDCHits > 20, pp /pΛ > 0.6,
flightSignificance > 2

✓ Performance of sWeights relative to MC
truth matching has been validated

20

Trinary PID

Binary PID p/π

Jake Bennett, Saroj Pokharel

