

Boyang Yu

LMU München

Belle II Germany Meeting, 20 Sep 2022

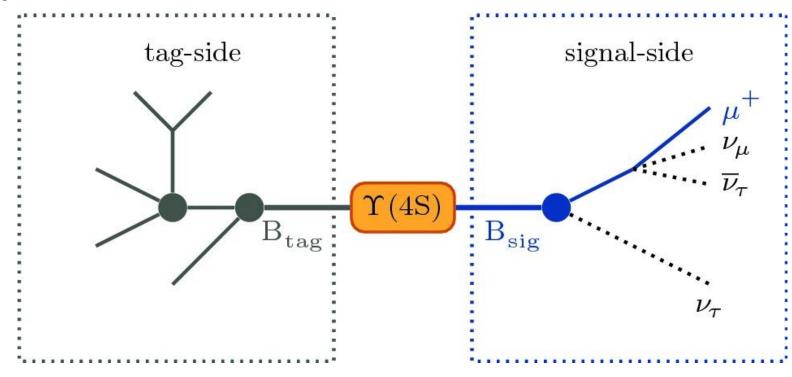
Introduction

- Prediction of decay channels from final state particles
 - -> Tell the branching ratios of different decay modes in a dataset
- Full reconstructions of decay trees

Introduction

Goals:

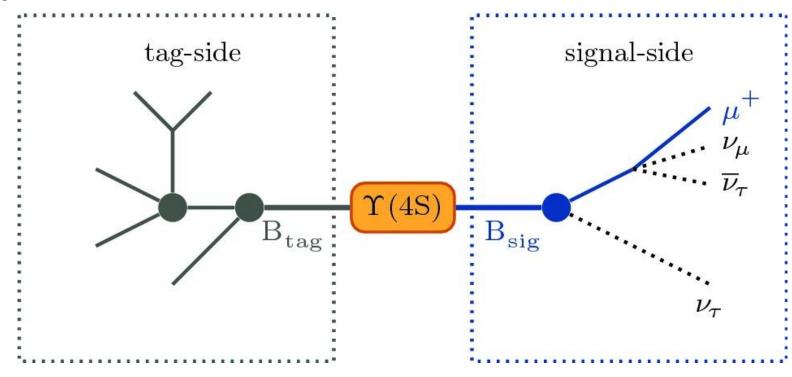
- Prediction of decay channels from final state particles
 - -> Tell the branching ratios of different decay modes in a dataset
- Full reconstructions of decay trees


Related work:

Full Event Interpretation

Motivation

Full Event Interpretation


- Explicitly reconstruct tag side
- Recover the kinematic and flavour information of signal side

Motivation

Full Event Interpretation

- Explicitly reconstruct tag side
- Recover the kinematic and flavour information of signal side
- Kernel: Decision Tree to predict reconstructions
 - -> Performance strongly restricted by training

Motivation

Full Event Interpretation

Low tag-side efficiency (the fraction of correctly tagged Y(4S) events)

	B [±] (%)	B ⁰ (%)
Hadronic	0.76	0.46
Semileptonic	1.80	2.04

Low covered branching fractions

	Inclusive		Exclusive	
	$m{B}^{\pm}~(\%)$	B ⁰ (%)	$m{B}^{\pm}$ (%)	B ⁰ (%)
Hadronic	9.0	9.8	1.7	1.1
Semileptonic	17.4	15.3	5.2	4.0

Introduction

Goals:

- Prediction of decay channels from final state particles
 - -> Tell the branching ratios of different decay modes in a dataset
- Full reconstructions of decay trees

Related work:

Full Event Interpretation

Limitation of FEI:

- Low tagging efficiency or tag-side efficiency
- Low covered branching fractions

Motivation

- Create a space to continuously represent all possible decays
 - -> not restriced by the channels used in the training

Motivation

- Create a space to continuously represent all possible decays
 - -> not restriced by the channels used in the training
- Encode decay relations in the space

Motivation

- Create a space to continuously represent all possible decays
 - -> not restriced by the channels used in the training
- Encode decay relations in the space
- Tolerant to missing particles
 - -> ensure higher efficiency

Motivation

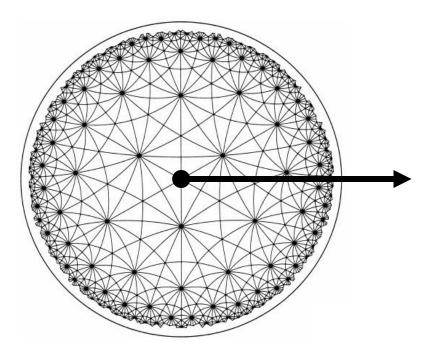
- Create a space to continuously represent all possible decays
 - -> not restriced by the channels used in the training
- Encode decay relations in the space
- Tolerant to missing particles
 - -> ensure higher efficiency
 - -> enable the reconstruction of both B mesons at the same time

Motivation

- Create a space to continuously represent all possible decays
 - -> not restriced by the channels used in the training
- Encode decay relations in the space
- Tolerant to missing particles
 - -> ensure higher efficiency
 - -> enable the reconstruction of both B mesons at the same time
- Build dynamics in the space to introduce reconstruction processes

Hyperbolic Space

Possible solution: Hyperbolic Space

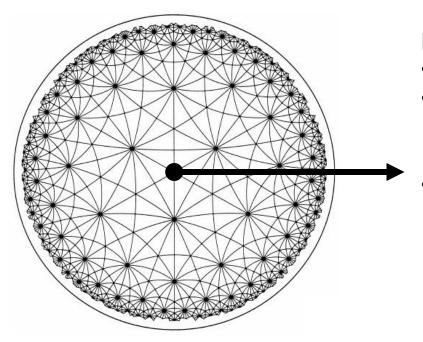


Hyperbolic Space

Possible solution: Hyperbolic Space (2D example – Poincare disc)

Curves = Straight lines in Poincare disc

$$\mathbb{D}^n = \{ x \in \mathbb{R}^n : c ||x||^2 < 1, c \ge 0 \}$$


$$g^{\mathbb{D}} = \lambda_c^2 g^E$$

$$\lambda_c = \frac{2}{1 - c ||x||^2}$$

Hyperbolic Space

Possible solution: Hyperbolic Space (2D example – Poincare disc)

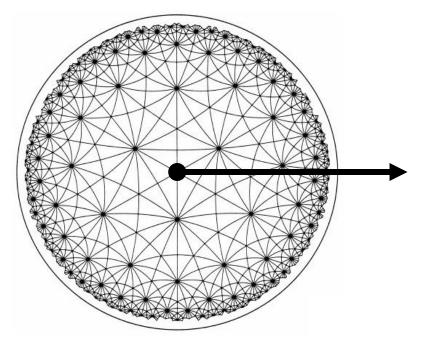
Properties:

- Rotational symmetry
- Size of an object with distance d to the center is proportional to $1-d^2$
 - -> Points will never reach the boundary
 - -> Effective space near the boundary is infinite
- Volume of the space scales exponentially with radius

Curves = Straight lines in Poincare disc

$$\mathbb{D}^n = \{x \in \mathbb{R}^n : c||x||^2 < 1, c \ge 0\}$$

$$g^{\mathbb{D}} = \lambda_c^2 g^E$$


$$\lambda_c = \frac{2}{1 - c||x||^2}$$

Hyperbolic Space

Possible solution: Hyperbolic Space (2D example – Poincare disc)

Curves = Straight lines in Poincare disc

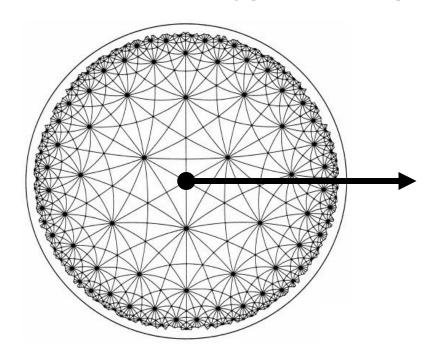
$$\mathbb{D}^n = \{x \in \mathbb{R}^n : c||x||^2 < 1, c \ge 0\}$$

$$g^{\mathbb{D}} = \lambda_c^2 g^E$$

$$\lambda_c = \frac{2}{1-c||x||^2}$$

Properties:

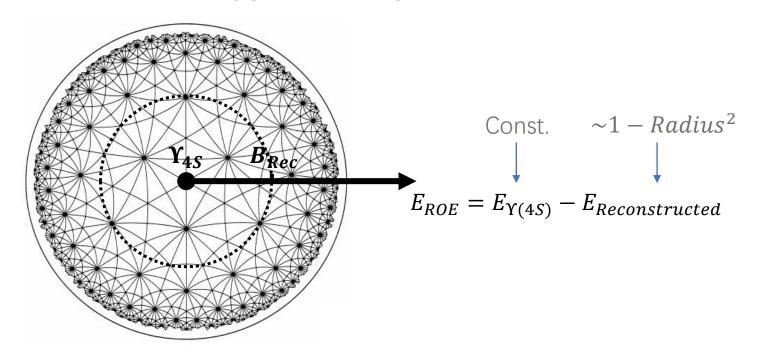
- Rotational symmetry
- Size of an object with distance arphi to the center is proportional to $1-d^2$
 - -> Points will never reach the boundary
 - -> Effective space near the boundary is infinite
- Volume of the space scales exponentially with radius


Comparison:

- In Euclidean spaces: Volume grows **polynomially** with radius
- For trees: Number of nodes grows exponentially with level

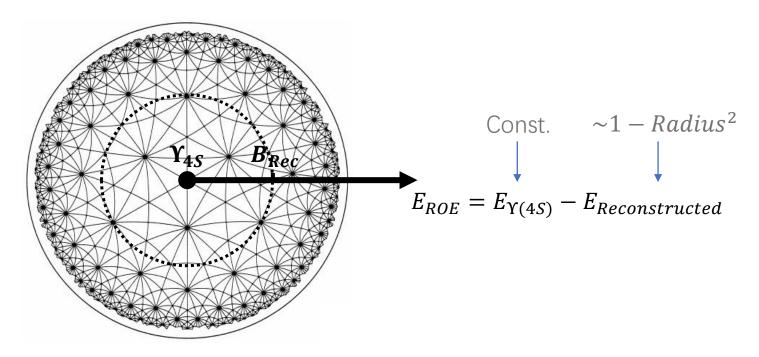
Hyperbolic Space

Possible solution: Hyperbolic Space (2D example – Poincare disc)



Hyperbolic Space

Possible solution: Hyperbolic Space (2D example – Poincare disc)



Hyperbolic Space

Possible solution: Hyperbolic Space (2D example – Poincare disc)

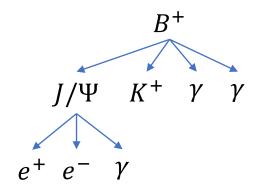
- Center: Singularity containing all full reconstructions of $\Upsilon(4S)$ -> Empty rest of event (ROE)
- Bulk points: Partially reconstructed decays
- Points near boundary: Starting points of reconstructions
 - -> The less reconstructed, the smaller branching ratio (taking less place in embedded space)
 - -> Enable all possible decays

Preparation

Proof of concept: Toy Monte Carlo

Dataset:

Four channels:


•
$$B^+ \rightarrow (J/\Psi \rightarrow e^+e^-)K^+$$

•
$$B^- \to (D^0 \to K^- \pi^+) \pi^-$$

•
$$B^+ \rightarrow \overline{D^0} \pi^+ \pi^0$$

•
$$B^- \to D^0 \pi^+ \pi^- \pi^-$$

Each event (Y4S Decay) produces several samples according to the depth of particles to its root B meson, e.g.

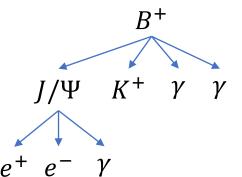
Preparation

Proof of concept: Toy Monte Carlo

Dataset:

Four channels:

•
$$B^+ \rightarrow (J/\Psi \rightarrow e^+e^-)K^+$$


•
$$B^- \rightarrow (D^0 \rightarrow K^- \pi^+) \pi^-$$

•
$$B^+ \rightarrow \overline{D^0} \pi^+ \pi^0$$

•
$$B^- \to D^0 \pi^+ \pi^- \pi^-$$

Each event (Y4S Decay) produces several samples according to the depth of particles to its root B meson, e.g.

- Depth 1 (Sample 1)
- Depth 2 (Sample 2)
- Depth 3 (Sample 3)

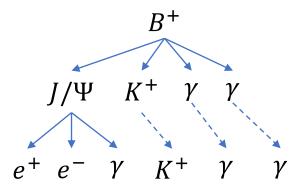
Preparation

Proof of concept: Toy Monte Carlo

Dataset:

Four channels:

•
$$B^+ \rightarrow (J/\Psi \rightarrow e^+e^-)K^+$$


•
$$B^- \to (D^0 \to K^- \pi^+) \pi^-$$

•
$$B^+ \rightarrow \overline{D^0} \pi^+ \pi^0$$

•
$$B^- \to D^0 \pi^+ \pi^- \pi^-$$

Each event (Y4S Decay) produces several samples according to the depth of particles to its root B meson, e.g.

- Depth 1 (Sample 1)
- Depth 2 (Sample 2)
- Depth 3 (Sample 3)

Preparation

Proof of concept: Toy Monte Carlo

Dataset:

Four channels:

•
$$B^+ \to (J/\Psi \to e^+e^-)K^+$$

•
$$B^- \to (D^0 \to K^- \pi^+) \pi^-$$

•
$$B^+ \rightarrow \overline{D^0} \pi^+ \pi^0$$

•
$$B^- \to D^0 \pi^+ \pi^- \pi^-$$

Each event (Y4S Decay) produces several samples according to the depth of particles to its root B meson, e.g.

Depth 1 (Sample 1)

 J/Ψ K^+ γ γ

 B^+

- Depth 2 (Sample 2)
- Depth 3 (Sample 3)

Each particle carries 12 features (**Bold** for reconstruction part)

PDG, mass, charge, energy, production time, x, y, z, **px**, **py**, **pz**, nDaughters

Preparation

Stage	Neural Networks	Task	Technics	Status
Particle Level Embedding				
Sample Level Embedding				
Reconstruction				

Preparation

Stage	Neural Networks	Task	Technics	Status
Particle Level Embedding	Automatic Feature Interaction (AutoInt) + Transformer Encoder			
Sample Level Embedding	Transformer Encoder + Hyperbolic Embedding (HypTr)			
Reconstruction	Hyperbolic Transformer Decoder + Generative Adversarial Set Transformer (GAST)			

Preparation

Stage	Neural Networks	Task	Technics	Status
Particle Level Embedding	Automatic Feature Interaction (AutoInt) + Transformer Encoder	Prediction of combinations of daughter particles	Supervised pre-training	
Sample Level Embedding	Transformer Encoder + Hyperbolic Embedding (HypTr)			
Reconstruction	Hyperbolic Transformer Decoder + Generative Adversarial Set Transformer (GAST)			

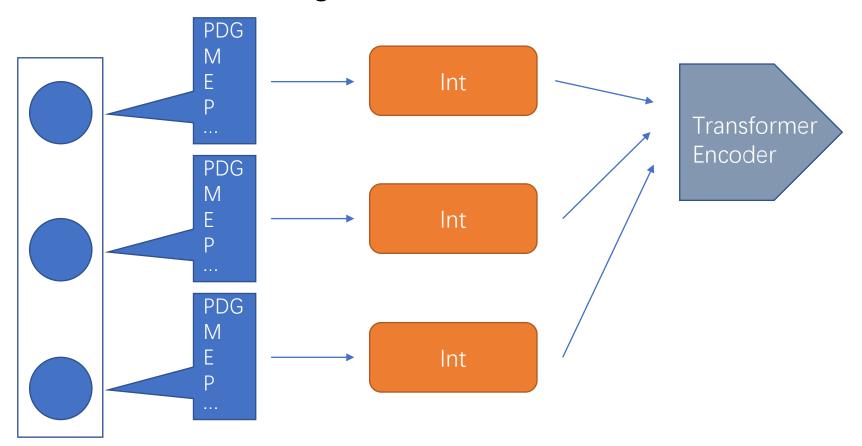
Preparation

Stage	Neural Networks	Task	Technics	Status
Particle Level Embedding	Automatic Feature Interaction (AutoInt) + Transformer Encoder	Prediction of combinations of daughter particles	Supervised pre-training	
Sample Level Embedding	Transformer Encoder + Hyperbolic Embedding (HypTr)	Learning the representation of decays in hyperbolic space	Unsupervised training + Knowledge transfer	
Reconstruction	Hyperbolic Transformer Decoder + Generative Adversarial Set Transformer (GAST)			

Preparation

Stage	Neural Networks	Task	Technics	Status
Particle Level Embedding	Automatic Feature Interaction (AutoInt) + Transformer Encoder	Prediction of combinations of daughter particles	Supervised pre-training	
Sample Level Embedding	Transformer Encoder + Hyperbolic Embedding (HypTr)	Learning the representation of decays in hyperbolic space	Unsupervised training + Knowledge transfer	
Reconstruction	Hyperbolic Transformer Decoder + Generative Adversarial Set Transformer (GAST)	Generation of samples with mother particles	Unsupervised training + Knowledge transfer	

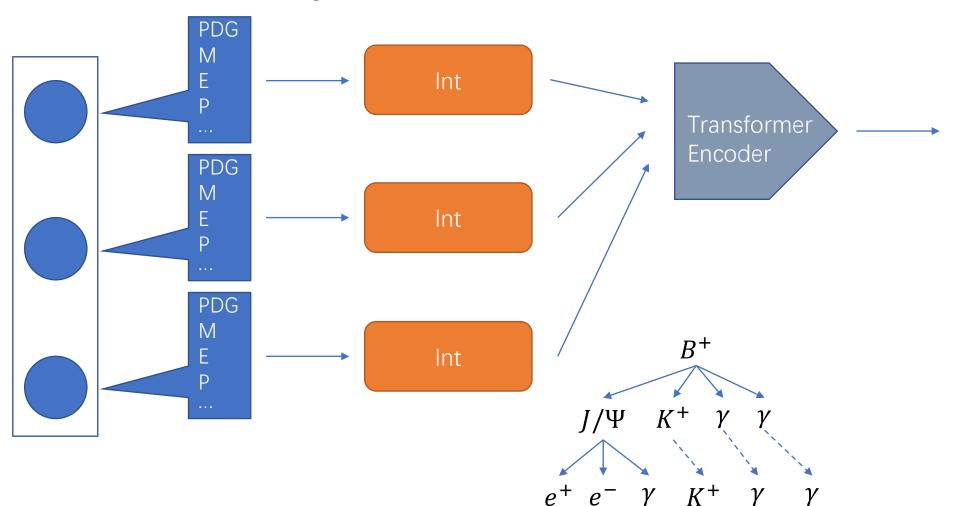
Preparation



Stage	Neural Networks	Task	Technics	Status
Particle Level Embedding	Automatic Feature Interaction (AutoInt) + Transformer Encoder	Prediction of combinations of daughter particles	Supervised pre-training	Finished on toy MC
Sample Level Embedding	Transformer Encoder + Hyperbolic Embedding (HypTr)	Learning the representation of decays in hyperbolic space	Unsupervised training + Knowledge transfer	Finished on toy MC
Reconstruction	Hyperbolic Transformer Decoder + Generative Adversarial Set Transformer (GAST)	Generation of samples with mother particles	Unsupervised training + Knowledge transfer	On going

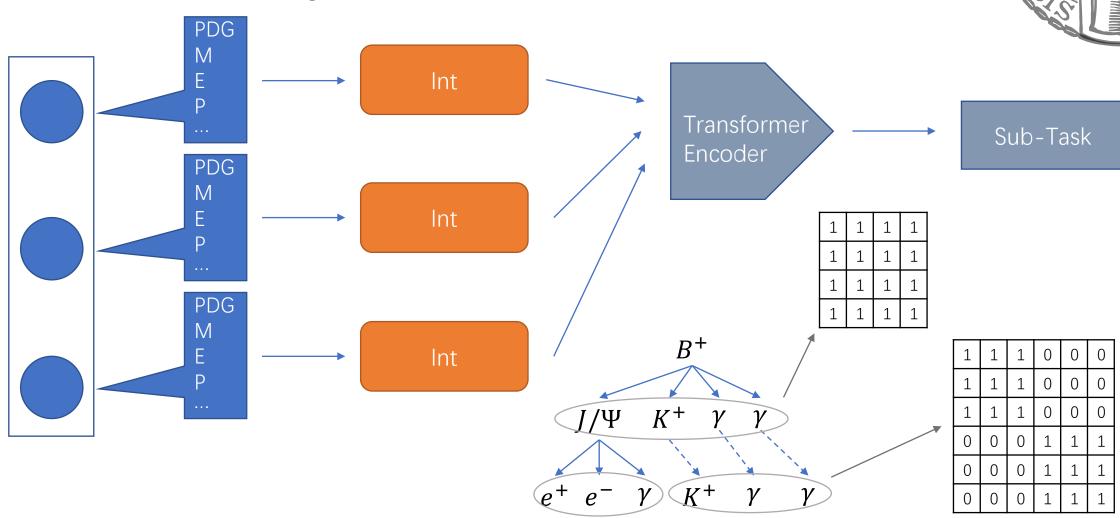
Practice

Particle Level Embedding:



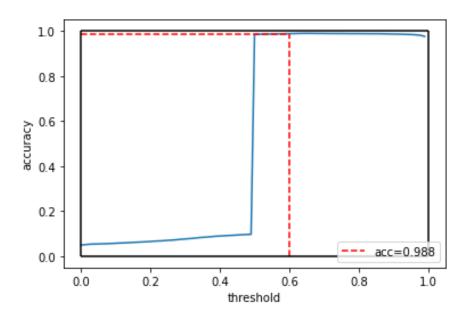
Practice

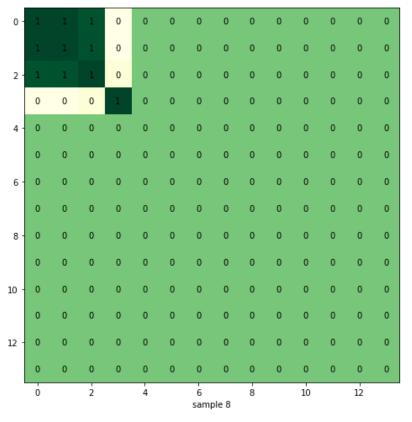
Sub-Task


Particle Level Embedding:

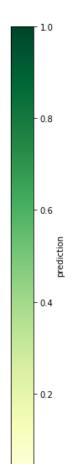
Practice

Particle Level Embedding:

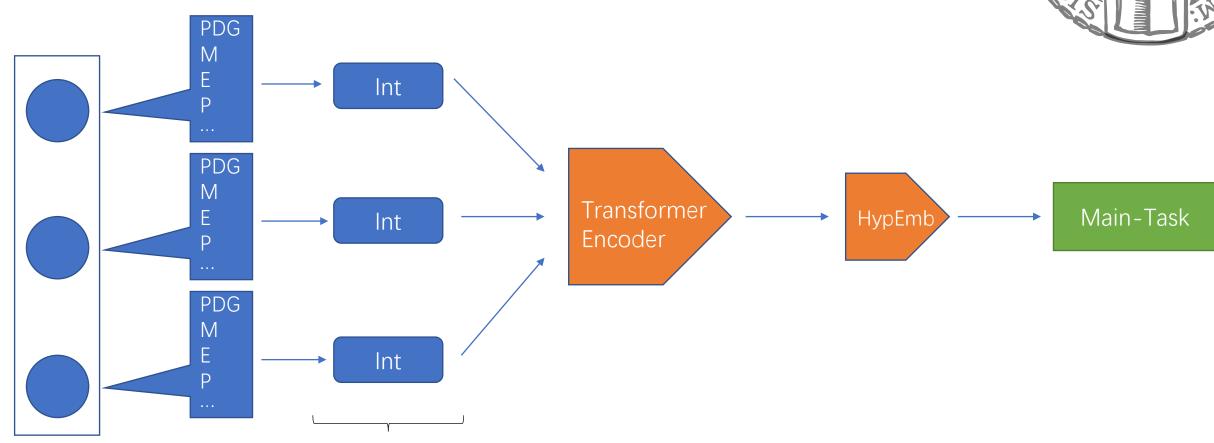




Practice


Particle Level Embedding:

Performance on toy MC



Practice

Sample Level Embedding:

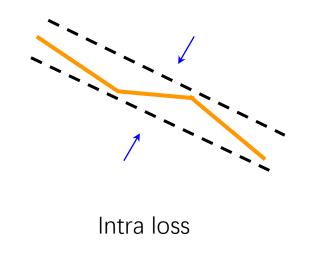
Pre-learned particle level embedding: Frozen at the beginning of trainings

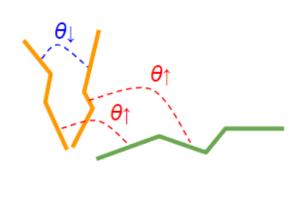
Practice

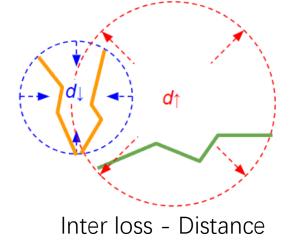
Sample Level Embedding – Losses:

• Intra loss: align the samples from the same decay event, separate otherwise

Intra loss

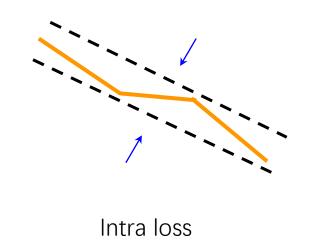



Practice

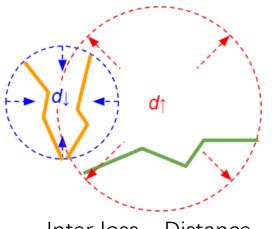


Sample Level Embedding – Losses:

- Intra loss: align the samples from the same decay event, separate otherwise
- Inter loss:
 - Angle loss: minimize the angles between pairs from similar decays (same channel for toy MC), maximize otherwise
 - Distance loss: minimize the hyperbolic distance between pairs from similar decays, maximize otherwise



Practice

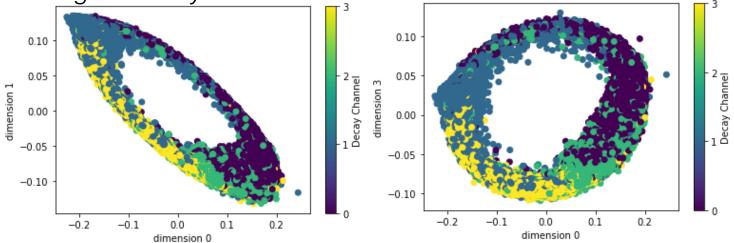


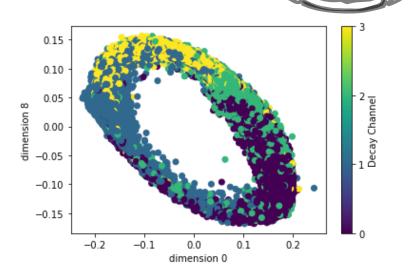
Sample Level Embedding – Losses:

- Intra loss: align the samples from the same decay event, separate otherwise
- Inter loss:
 - Angle loss: minimize the angles between pairs from similar decays (same channel for toy MC), maximize otherwise
 - Distance loss: minimize the hyperbolic distance between pairs from similar decays, maximize otherwise
- Radius loss: encourage the radius of embedded samples to be certain values according to their depths will be replaced by fix radius calculated from E_{ROE} in the future

 $\theta \uparrow$

Inter loss - Distance

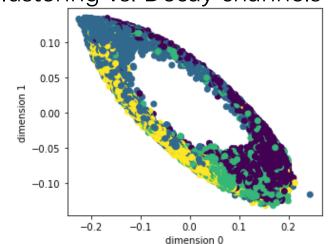



Practice

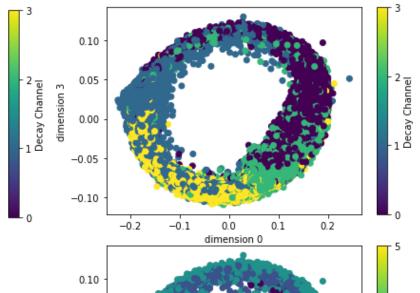
Sample Level Embedding:

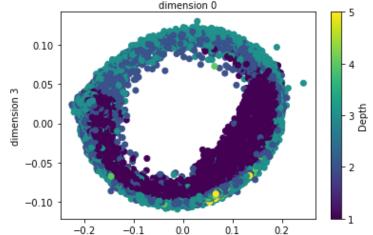
Visualisation with 16 dimensional hyperbolic embedding

Clustering vs. Decay channels

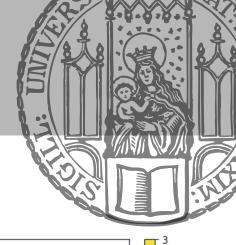


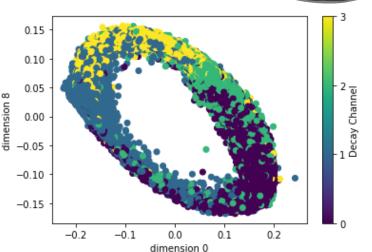
Practice


Sample Level Embedding:

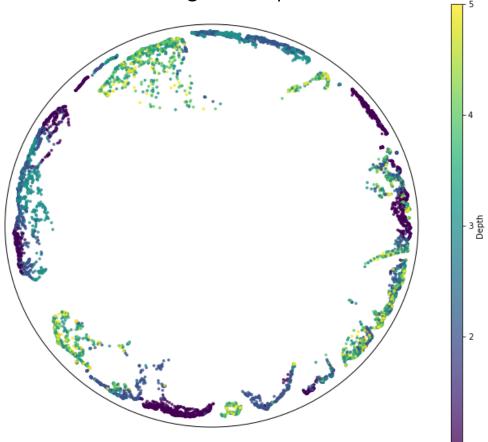

Visualisation with 16 dimensional hyperbolic embedding

Clustering vs. Decay channels





dimension 0


Practice

Sample Level Embedding:

Visualisation with UMAP* for 16 dimensional hyperbolic embedding

Clustering vs. Decay channels

Clustering vs. Depth

Summary

Capacities:

Particle Level Embedding

• 12K Parameters

Sample Level Embedding

- 900K Parameters
- 16-D hyperbolic space

Summary

Capacities:

Particle Level Embedding

12K Parameters

Sample Level Embedding

- 900K Parameters
- 16-D hyperbolic space

In Comparison – Famous Networks using Transformer

- Vision Transformer (small): 85M Parameters
- BERT (small): 110M Parameters
- GPT-3: 175B Parameters
- Hyperbolic Vision Transformer: 22M Parameters, 384-D hyperbolic space

Summary

Capacities:

Particle Level Embedding

12K Parameters

Sample Level Embedding

- 900K Parameters
- 16-D hyperbolic space

In Comparison – Famous Networks using Transformer

- Vision Transformer (small): 85M Parameters
- BERT (small): 110M Parameters
- GPT-3: 175B Parameters
- Hyperbolic Vision Transformer: 22M Parameters, 384-D hyperbolic space

-> Great potential for improvement

Summary

Summary:

- Finished the prediction of decay channels from final state particles for toy MC
- Hyperbolic embedding works for the representation of decays

Summary

Summary:

- Finished the prediction of decay channels from final state particles for toy MC
- Hyperbolic embedding works for the representation of decays

To do:

- Finish the generation part
- Study the necessity of using hyperbolic embedding, i.e. improvement against Euclidean space
- Try with real dataset with general channels
- Test the performance on rare decays

Summary

Summary:

- Finished the prediction of decay channels from final state particles for toy MC
- Hyperbolic embedding works for the representation of decays

To do:

- Finish the generation part
- Study the necessity of using hyperbolic embedding, i.e. improvement against Euclidean space
- Try with real dataset with general channels
- Test the performance on rare decays

Outlook:

- Once well trained with large dataset, can be used for the reconstruction of any decay channels
- The workflow / well trained networks can also be invested on other HEP projects

Thank You for your Attention

Boyang Yu

Boyang.Yu@physik.uni-muenchen.de

LMU München

Belle II Germany Meeting, 20 Sep 2022

Reference:

- 1. T. Keck et al. "The Full Event Interpretation -- An exclusive tagging algorithm for the Belle II experiment", arXiv:1807.08680
- 2. T. Keck, "The Full Event Interpretation for Belle II", IEKP-KA-2014-18
- 3. W. Peng et al. "Hyperbolic Deep Neural Networks: A Survey", arXiv:2101.04562
- 4. A. Vaswani et al. "Attention Is All You Need", arXiv:1706.03762
- 5. W. Song et al. "AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks", arXiv:1810.11921
- 6. K. Stelzner et al. "Generative Adversarial Set Transformers", Workshop on Object-Oriented Learning at ICML 2020
- 7. L. McInnes et al. "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction", arXiv:1802.03426
- 8. A. Ermolov et al. "Hyperbolic Vision Transformers: Combining Improvements in Metric Learning", arXiv:2203.10833

Backup

Backup

Hyperbolic metrics

Addition:
$$\mathbf{x} \oplus_c \mathbf{y} = \frac{(1 + 2c\langle \mathbf{x}, \mathbf{y} \rangle + c \|\mathbf{y}\|^2)\mathbf{x} + (1 - c \|\mathbf{x}\|^2)\mathbf{y}}{1 + 2c\langle \mathbf{x}, \mathbf{y} \rangle + c^2 \|\mathbf{x}\|^2 \|\mathbf{y}\|^2}$$

Distance:
$$D_{hyp}(\mathbf{x}, \mathbf{y}) = \frac{2}{\sqrt{c}} \operatorname{arctanh}(\sqrt{c} \| -\mathbf{x} \oplus_{c} \mathbf{y} \|)$$

Exponential:
$$\exp_{\mathbf{x}}^{c}(\mathbf{v}) = \mathbf{x} \oplus_{c} \left(\tanh \left(\sqrt{c} \frac{\lambda_{\mathbf{x}}^{c} || \mathbf{v} ||}{2} \right) \frac{\mathbf{v}}{\sqrt{c} || \mathbf{v} ||} \right)$$

with x the base point, usually set to 0

Backup

Pairwise Cross-Entropy Loss

Pairwisely calculate hyperbolic distance and euclidical cosine similarity

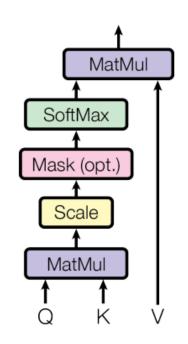
$$D_{hyp}(\mathbf{x}, \mathbf{y}) = \frac{2}{\sqrt{c}}\operatorname{arctanh}(\sqrt{c}\| - \mathbf{x} \oplus_{c} \mathbf{y}\|)$$

$$D_{cos}(\mathbf{z}_{i}, \mathbf{z}_{j}) = \left\| \frac{\mathbf{z}_{i}}{\|\mathbf{z}_{i}\|_{2}} - \frac{\mathbf{z}_{j}}{\|\mathbf{z}_{j}\|_{2}} \right\|_{2}^{2} = 2 - 2 \frac{\langle \mathbf{z}_{i}, \mathbf{z}_{j} \rangle}{\|\mathbf{z}_{i}\|_{2} \cdot \|\mathbf{z}_{j}\|_{2}}$$

• Calculate the cross entropy losses w.r.t the two metrics for positive pairs (i,j)

$$l_{i,j} = -\log \frac{\exp(-D(\mathbf{z}_i, \mathbf{z}_j)/\tau)}{\sum_{k=1, k \neq i}^K \exp(-D(\mathbf{z}_i, \mathbf{z}_k)/\tau)}$$

Backup

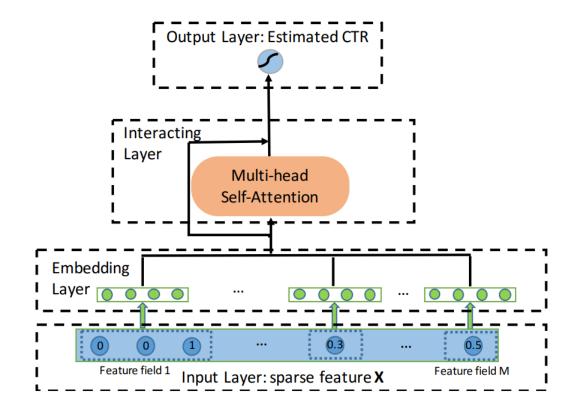

Building Block: Multihead Attention

- Inputs and outputs are all vectors
 - *Q*: Query
 - *K*: Keys
 - V: Values
- Weights represent the similarity of Q and K
- Attention is reweighted V

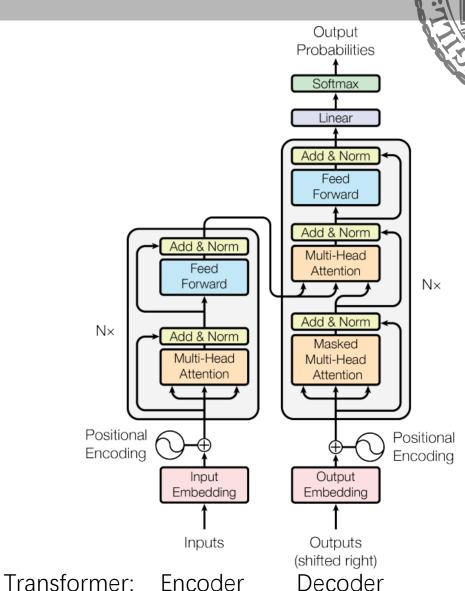
$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

 Multi-Head enables different combinations of the subspaces of the inputs through linear projections

Scaled Dot-Product Attention

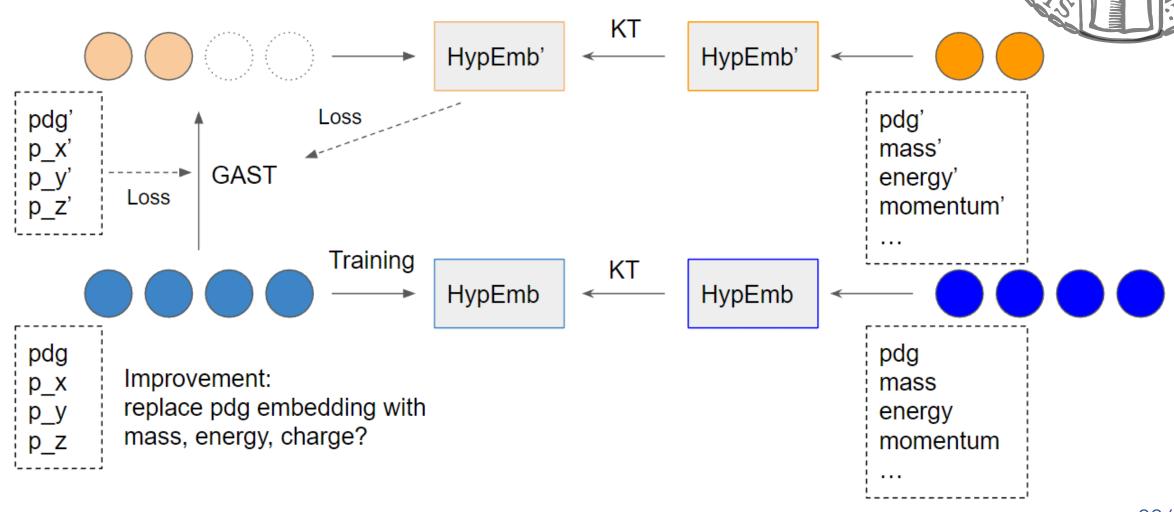


Multi-Head Attention Linear Concat Scaled Dot-Product Attention Linear Linear



Backup

Building Block: Interactor and Transformer


AutoInt: Interactor

Backup

Reconstruction: Generative Adversarial Set Transformers + Knowledge Transfer

