# Search for a long-lived scalar in $b \rightarrow s$ transitions.

Sascha Dreyer, Torben Ferber

**HELMHOLTZ** RESEARCH FOR GRAND CHALLENGES

Belle II Germany Meeting 20.09.2022

sascha.dreyer@desy.de









#### A long-lived (scalar) particle in $b \rightarrow s_{\bullet}$



Sascha Dreyer





A long-lived (scalar) particle in  $b \rightarrow s_{\bullet}$ 

• Exclusive search in eight channels:

- $R^+ \rightarrow K^+ \sqcup \square \square$
- $B^0 \rightarrow [K^{*0} \rightarrow K^+ \pi^-] LLP$

• LLP  $\rightarrow x^+x^-$  with  $x \in (e, \mu, \pi, K)$ 

- Reconstruct signal *B* meson
- Bump hunt in rec. LLP mass distribution
- Separately for different LLP lifetime hypotheses
- Aim at publication with Moriond 22 data end of this year  $(189 \text{ fb}^{-1}, \text{ proc}12 + \text{ buckets } 16-25)$

Sascha Dreyer







Search for a long-lived particle at Belle II

#### Selection.

Background sources:



- Combinatorics in  $e^+e^- \rightarrow q\bar{q}$
- Peaking *B* decays

Sascha Dreyer





## Selection $-K_S^0$ rejection.



Sascha Dreyer





#### Selection – Combinatorial $e^+e^- \rightarrow q\bar{q}$ rejection.



• Optimise a set of rectangular selections using the Punzi figure-of-merit

Sascha Dreyer





#### Selection — Peaking B decays rejection.



• Tighten selections in vertex displacement

Sascha Dreyer

Search for a long-lived p









Default PID performs poorly for daughters of highly displaced LLPs 

Excluding TOP likelihood and restricting tested particle hypotheses recovers performance

Sascha Dreyer





## $K_S^0$ control channel.



• The vetoed  $K_S^0$  are used to study LLP performance

Sascha Dreyer







# $K_{\rm S}^0$ control channel — correction factors.



•  $K_{S}^{0}$  data/MC discrepancy is used to determine correction factors

Corrections on LLP efficiency & template parameters as a function of vertex displacement

Sascha Dreyer







#### Signal extraction.



Sascha Dreyer

Search for a long-lived particle at Belle II

First order Chebyshev polynomial models background

![](_page_10_Picture_6.jpeg)

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_8.jpeg)

#### Signal extraction — simultaneous.

- Extract signal yield in all channels with a simultaneous fit
- Use model prediction for the signal branching fractions in different channels

Search for a long

![](_page_11_Figure_5.jpeg)

![](_page_11_Picture_6.jpeg)

#### Upper limit on the branching fraction — small lifetime.

![](_page_12_Figure_1.jpeg)

Sascha Dreyer

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

#### Upper limit on the branching fraction — medium lifetime.

![](_page_13_Figure_1.jpeg)

Sascha Dreyer

Search for a long-lived particle at Belle II

![](_page_13_Picture_5.jpeg)

### Upper limit on the mixing angle.

![](_page_14_Figure_1.jpeg)

Sascha Dreyer

Search for a long-lived particle at Belle II

![](_page_14_Picture_5.jpeg)

## Upper limit on the mixing angle — simultaneous extraction.

- Model constrained more strongly by combining information from multiple channels
- Expect best limits at low masses  $< 280 \,\mathrm{MeV}/c^2$ and in the  $K_S^0$  mass region

![](_page_15_Figure_3.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

#### Summary.

- Search for a long-lived scalar in  $b \rightarrow s$  transitions
- In working group review started studying sideband data
- Plan to publish using Moriond dataset expecting competitive results ~ end of the year
- Stay tuned ...

Internal note

Search for a long-lived particle at Belle II

![](_page_16_Picture_12.jpeg)