

Influence of DCD parameters on pedestal noise

FSP Belle II Germany Meeting 2022

Munira Khan, Georgios Giakoustidis, Jannes Schmitz, Botho Paschen, Florian Bernlochner, Jochen Dingfelder

Increase of pedestal noise at PXD1

- Pedestal noise = standard deviation of mean drain current in DEPFET pixel
- Noise median went from 0.5 to 0.7 ADU up to 0.9 to 1.4 ADU during operation time as the sensors face radiation
- Unclear cause of the increased pedestal noise
- → Investigate effects of digitization of DEPFET currents

PXD modules

- Thickness of active area: 75 μm
- Row-wise rolling shutter readout
- Drain current read with $\sim 20 \ \mu s$ integration time

6 Switchers

Control gate and clear lines

4 Drain Current Digitizers (DCD)

- Amplify and digitize drain current
- 256 Analog to Digital Converters (ADCs)

4 Data Handling Processor (DHP)

• Store data for further processing

Pedestals

W55_IF @ SiLab

- Aim for narrow pedestals in dynamic range which have low noise
- Homogenous pedestal distribution throughout the matrix
- Corrections to pedestals can be applies such as Analogue Common Mode Correction (ACMC) and offsets

Raw pedestals

ACMC & OFFSET ON counts 10³ ≥ 400 10² 100 -10¹ ADU column UNIVERSITÄT BO

Characteristics of the DCD

ADC scan at PXD WebHome Confluence

- DCD Parameters are optimized during module characterization
- Determine good channels based on criteria of linearity, range, gain, missing codes and noise
- Four parameters of the DAC and two reference voltages influence the operation of ADCs

Scan over four parameter spaces:

- DCD RefIn vs AmpLow
- IPSource-Middle
- IFBPBias
- IPSource vs IPSource2

Pedestal noise

- Record drain currents over 100 frames
- Pedestals: Mean drain current I_{D} in each pixel
- Pedestal Noise: Standard deviation of ${\rm I}_{\rm D}$ in each pixel
- → Use median of the pedestal noise distribution as estimator for the whole module

Past studies of DCD influence on noise

- X-Ray Irradiation of <u>whole modules</u> in 2021
- Increase of pedestal noise at approx.
 4000 Gy (= 400 krad) of 0.2 ADU

irradiation, indico

- Irradiation of <u>only</u> DCD in 2016
- No influence of irradiation on the pedestal noise until 4000 krad

 \rightarrow Comparability of results?

DCD Pedestal Noise Analysis

Which influence does the change of DCD parameters have on pedestal noise?

Measurements:

 Unirradiated W55_IF module at laboratory ACMC & Offsets ON VS ACMC & Offsets OFF

• Irradiated PXD1 modules at KEK Operational temperature VS Zero degrees

DCD Voltages AmpLow vs RefIn W55_IF @ SiLab

ACMC & OFFSET ON

- Two-dimensional parameter scan over DCD AmpLow and RefIn
- Quantify noise for the whole module through median value at each scan point
- Median noise through the scan ranges within 0.75 to 0.87 ADU

 \rightarrow Change of 0.12 ADU

Temperature dependence of noise spread DCD AmpLow vs RefIn

- Scan of the irradiated PXD1 modules at KEK
- Noise ranges in order of 0.1 ADU during scan at operational temperature
- Higher temperature leads to increase in noise

11

Noise spectra of DAC IFBPBias scan

- Overall similar noise spectrum throughout the scan
- Irradiated modules show higher pedestal noise

munira.khan@uni-bonn.de

12

UNIVERSITÄT BONN

DAC IPSource vs IPSource2 W55_IF @ SiLab

ACMC & OFFSET ON

- DAC parameters influence ADC gain
 - IPSource 64 = total dynamic range of 16 μ A
 - IPSource $120 = 32 \mu A$ range
- Same value of IPSource and IPSource2 are preferred by design
- ADC scan only entails IPSource values from 60 to 95

Pedestal noise spectrum IPSource vs IPSource2

- IPSource influences gain of DCD
- Extended scan range brings module out of operatable state→ noise = 0
- Noise change in order of 0.2 ADU

W55_IF @ SiLab Unirradiated

14

UNIVERSITÄT BONN

Pixel-wise pedestal noise IPSource = IPSource2 = 80 W55_IF @ SiLab ACMC & OFFSET ON

- Corresponds to operational setting
- Higher noise at one side of the DCD

Conclusion and outlook

W55_IF @ SiLab Unirradiated ACMC & OFFSET ON

- Observed higher noise for:
 - ACMC and offsets turned off
 - Irradiated modules
 - Higher temperatures

DCD RefIn vs AmpLow:0.12 ADUIPSource-Middle:IFBPBias:0.08 ADUIPSource vs IPSource2:~ 0.2 ADU

- Similar behaviour of unirradiated and irradiated modules throughout the DCD parameter scans
- → Disentangle radiation effects through study of modules with irradiated DEPFETs and unirradiated DCDs

Backup

Pedestal noise on DCD

W55_IF @ SiLab

- From ADC scan during module characterization
- One side of DCD shows increased median noise

https://elog.belle2.org/elog/PXD-Mass-Testing/23094

Tuning parameters of DCD performance

- Entails current memory cells and comparators
- Capacity C_f acts as the memory element, the amplifier A and transconductance T

DAC parameters

- IPSource adds and reduces currents at node 4
- T has adjustable current sources for sourcing (FBPBias) and sinking (PSource2)

DCD Voltages

- AmpLow is ground potential at A
- RefIn is a fixed potential reference at several nodes

Simplified layout of single CMC

