

Measuring A_{LR} with polarization at Belle II via cc̄ production

Alan Schwartz

B2GM 24 January 2022

$$\begin{split} A_{LR} &= \frac{\sigma(e^+e^-_L \to \bar{c}c) - \sigma(e^+e^-_R \to \bar{c}c)}{\sigma(e^+e^-_L \to \bar{c}c) + \sigma(e^+e^-_R \to \bar{c}c)} \equiv \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \\ &= \frac{N(\bar{c}c)_L/\mathcal{L}_L - N(\bar{c}c)_R/\mathcal{L}_R}{N(\bar{c}c)_L/\mathcal{L}_L + N(\bar{c}c)_R/\mathcal{L}_R} \\ &\equiv \frac{N_L/\mathcal{L}_L - N_R/\mathcal{L}_R}{N_L/\mathcal{L}_L + N_R/\mathcal{L}_R} \end{split}$$

$$\begin{bmatrix} \text{NOTE:} \\ \text{factor div} \\ \text{a single} \end{bmatrix}$$

[NOTE: for $N = D^0$ decays, the fragmentation factor divides out. For N_L , N_R being the yield of a single decay mode, the efficiency divides out]

$$\Rightarrow \quad \delta A_{LR} = \frac{2(N_L/\mathcal{L}_L)(N_R/\mathcal{L}_R)}{(N_L/\mathcal{L}_L + N_R/\mathcal{L}_R)^2} \sqrt{\left(\frac{\delta N_L}{N_L}\right)^2 + \left(\frac{\delta N_R}{N_R}\right)^2 + \left(\frac{\delta \mathcal{L}_L}{\mathcal{L}_L}\right)^2 + \left(\frac{\delta \mathcal{L}_R}{\mathcal{L}_R}\right)^2}$$

$$\approx \frac{1}{2} \sqrt{\left(\frac{\delta N_L}{N_L}\right)^2 + \left(\frac{\delta N_R}{N_R}\right)^2 + \left(\frac{\delta \mathcal{L}_L}{\mathcal{L}_L}\right)^2 + \left(\frac{\delta \mathcal{L}_R}{\mathcal{L}_R}\right)^2} \qquad [if N_L / \mathcal{L}_L \approx N_R / \mathcal{L}_R]$$

$$\Rightarrow \frac{\delta A_{LR}}{A_{LR}} = \frac{2(N_L/\mathcal{L}_L)(N_R/\mathcal{L}_R)}{(N_L/\mathcal{L}_L)^2 - (N_R/\mathcal{L}_R)^2} \sqrt{\left(\frac{\delta N_L}{N_L}\right)^2 + \left(\frac{\delta N_R}{N_R}\right)^2 + \left(\frac{\delta \mathcal{L}_L}{\mathcal{L}_L}\right)^2 + \left(\frac{\delta \mathcal{L}_R}{\mathcal{L}_R}\right)^2}$$

What are these factors?

A.J. Schwartz A_{LR} with polarization at Belle II

B2GM, 24 January 2022

$$\delta A_{LR} \; = \; rac{2(N_L/\mathcal{L}_L)(N_R/\mathcal{L}_R)}{(N_L/\mathcal{L}_L \;+\; N_R/\mathcal{L}_R)^2} \, \sqrt{\left(rac{\delta N_L}{N_L}
ight)^2 \;+\; \left(rac{\delta N_R}{N_R}
ight)^2 \;+\; \left(rac{\delta \mathcal{L}_L}{\mathcal{L}_L}
ight)^2 \;+\; \left(rac{\delta \mathcal{L}_R}{\mathcal{L}_R}
ight)^2}$$

Take $\mathcal{L}_L = \mathcal{L}_R = 40 \ ab^{-1}$ (from p.14 of M. Roney's TAU 2021 talk, September 2021)

Note that $(\delta \mathcal{L}_L / \mathcal{L}_L) = (\delta \mathcal{L}_R / \mathcal{L}_R) \approx 1.4\%$ (Belle) or 1.1% (BaBar); Belle II would need to do much better

For negligible background, take $(\delta N_L/N_L) \approx 1/\sqrt{N_L}$, $(\delta N_R/N_R) \approx 1/\sqrt{N_R}$

But: what are N_L , N_R ?

A.J. Schwartz A_{LR} with polarization at Belle II

- To minimize backgrounds, we need to use $D^{*+} \rightarrow D^0 \pi^+$ decays
- To maximize statistics, we need to use Cabibbo-favored (CF) D⁰ decays, i.e.,

 $\begin{array}{lll} D^0 \rightarrow K^- \pi^+ & (branching \ fraction = \ 4.0 \ \%) \\ D^0 \rightarrow K^- \pi^+ \pi^0 & (branching \ fraction = 14.4 \ \%, \ but \ notable \ backgrounds \ due \ to \ \pi^0) \\ D^0 \rightarrow K^- \pi^+ \pi^+ \pi^- & (branching \ fraction = \ 8.2 \ \%) \end{array}$

What are the yields of these decays at Belle II?

only one charm paper published so far:

PHYSICAL REVIEW LETTERS 127, 211801 (2021)

Precise Measurement of the D^0 and D^+ Lifetimes at Belle II

F. Abudinén,³¹ I. Adachi,^{21,18} K. Adamczyk,⁶⁶ L. Aggarwal,⁷³ H. Ahmed,⁷⁶ H. Aihara,¹¹² N. Akopov,² A. Aloisio,^{88,25} N. Anh Ky,^{40,13} D. M. Asner,³ H. Atmacan,⁹⁹ V. Aushev,⁸¹ V. Babu,¹¹ S. Bacher,⁶⁶ H. Bae,¹¹² S. Baehr,⁴⁶ S. Bahinipati,³³ P. Bambade,⁹⁵ Sw. Banerjee,¹⁰³ S. Bansal,⁷³ M. Barrett,²¹ J. Baudot,⁹⁶ M. Bauer,⁴⁶ A. Baur,¹¹ J. Becker,⁴⁶ P. K. Behera,³⁵ J. V. Bennett,¹⁰⁶ E. Bernieri,²⁹ F. U. Bernlochner,⁹⁷ M. Bertemes,³⁸ E. Bertholet,⁸⁴ M. Bessner,¹⁰¹ S. Bettarini,^{91,28} V. Bhardwaj,³² F. Bianchi,^{93,30} T. Bilka,⁷ S. Bilokin,⁵⁴ D. Biswas,¹⁰³ A. Bobrov,^{46,68} D. Bodrov,^{64,52} A. Bolz,¹¹
<u>A. Bozek ⁶⁶ M. Bračko ^{104,80} P. Branchini ²⁹ N. Braun ⁴⁶ P. A. Briere ⁵ T. F. Browder ¹⁰¹ A. Budano ²⁹ S. Bussino ^{92,29}
</u>

$D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+$

From this analysis, we have:

• $f = 72 \, fb^{-1}$

•
$$N_{signal} = 171 \times 10^3$$

Purity = 0.998

⇒ in 40 ab⁻¹, we would reconstruct (171000)(40/0.072) = 95 x 10⁶ decays

 $\Rightarrow (\delta N_L/N_L) = 1.0 \times 10^{-4}$

Note that $\delta L/L = 0.011$ (Belle/Babar precision) would dominate

A.J. Schwartz A_{LR} with polarization at Belle II

B2GM, 24 January 2022

$$D^{*+} \rightarrow D^0 \pi^+$$
, $D^0 \rightarrow K^- \pi^+$

(take to be 0 for now)

$$\delta A_{LR} \; = \; rac{2(N_L/\mathcal{L}_L)(N_R/\mathcal{L}_R)}{(N_L/\mathcal{L}_L \; + \; N_R/\mathcal{L}_R)^2} \, \sqrt{\left(rac{\delta N_L}{N_L}
ight)^2 \; + \; \left(rac{\delta N_R}{N_R}
ight)^2 \; + \; \left(rac{\delta \mathcal{L}_L}{\mathcal{L}_L}
ight)^2 \; + \; \left(rac{\delta \mathcal{L}_R}{\mathcal{L}_R}
ight)^2}$$

A.J. Schwartz A_{LR} with polarization at Belle II

B2GM, 24 January 2022

6

Add another mode: $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

Belle:

- $\mathcal{L} = 281 \ fb^{-1}$
- Nsig = 525900
- Purity = very good
- ⇒ in 40 ab⁻¹, we would reconstruct
 (525900)(40/0.281) = 74.9 x 10⁶ decays

$$\Rightarrow (\delta N_L/N_L) = 1.2 \times 10^{-4}$$

This would almost double the statistics

⇒ reduce statistical error on δA_{LR} by ~30%, but a systematic from the ratio of efficiencies $\varepsilon_{K\pi}/\varepsilon_{K\pi\pi\pi}$ would enter X.C.Tian et al. (Belle), PRL 95, 231801 (2005)

- Measurement is feasible: there will be large, ~background-free charm samples. Most promising modes are $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$, $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$. The $K^- \pi^+$ final state is expected to provide somewhat better sensitivity.
- But uncertainty on integrated luminosity could dominate the measurement (?)
- Assuming it does not, the first charm result from Belle II indicates that the precision $(\delta A_{LR}/A_{LR})$ would be perhaps a factor of 2 worse than initial (rough) estimates