Beam Polarimetry with Taus for an Upgraded SuperKEKB

Caleb Miller

Jan 25, 2022

Beam Polarization Motivation

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electro-weak parameters. Including A_{LR} for e,µ, τ ,c,b

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_f S}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle P \rangle \propto T_3^f$$

 $\int_{2}^{f} - 2Q_f \sin^2 \theta_W$

Beam Polarization Motivation

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electroweak parameters. Including A_{LR} for e,μ,τ,c,b

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_f S}{4\pi\alpha Q_f} \right) g_A^e g_V^f (P) \propto T$$

SuperKEKB precise measurements of electro-

 $\Gamma_3^f - 2Q_f \sin^2 \theta_W$

bars show expected sensitivity of future experiments

Belle expects: $\sigma(\sin_2\theta_W) \approx 0.0002$ (40 ab⁻¹)

Beam Polarization Motivation, Tau anomalous magnetic moment

- Beam polarization is being considered as a future upgrade to SuperKEKB
- Measurement of tau magnetic moment could be sensitive to new physics
- From Martin Hoferichter's presentation:

$$a_{\mu}^{\text{exp}} = 116,592,061(41) \times 10^{-11}$$
 vs. $a_{\mu}^{\text{SM}} = 116,591,81$

Significant deviation in Muon g-2:

$$a_{\mu}^{\mathsf{exp}} - a_{\mu}^{\mathsf{SM}} = 251(59) imes 10^{-11}[4.2\sigma]$$

Tau g-2 could scale with mass:
$$a_{ au}^{ extsf{BSM}} \simeq a_{\mu}^{ extsf{BSM}} \left(rac{m_{ au}}{m_{\mu}}
ight)^2 \simeq 0.7 imes 10^{-6}$$

- Polarized beams would give Belle II sensitivity to probe the tau magnetic moment at a level of sensitivity equivalent to the muon g-2 discrepancy in Minimal Flavour Violation scenarios
- Theory will need to be full NNLO for comparisons

 $10(43) \times 10^{-11}$

Polarization Sensitivity in Tau Decays

The kinematics of the $\tau \rightarrow \pi v$ provide a powerful insight into the polarization

Pion Momentum, Polarization Sensitivity

- Polarization sensitivity is mirrored between the forward and backward region of the detector
- Theta is defined as the angle between the pion and the electron beam direction

Red: Left-Handed e⁻ beam, Blue: Right-Handed e⁻ beam

Rho, Polarization Sensitivity

Rho polarization sensitivity appears in two variables¹

¹ K. Hagiwara, A. Martin, D. Zeppenfeld, Tau Polarization Measurements at LEP and SLC, Phys. Lett. B. 235, 1998, DOI: 10.1016/0370-2693(90)90120-U

Rho, Polarization Sensitivity

Rho polarization sensitivity appears in two variables¹

¹K. Hagiwara, A. Martin, D. Zeppenfeld, Tau Polarization Measurements at LEP and SLC, Phys. Lett. B. 235, 1998, DOI: 10.1016/0370-2693(90)90120-U

Pion Analysis Status

- We developed the technique on BaBar
 - Using 32.28 fb⁻¹ as a blind sample (424.18 fb⁻¹ On-peak data available)
- We tag tau events by $\tau^{\pm} \rightarrow \pi^{\pm} n \pi^{o} v$
 - One charged track, n π^{o} s in 115 MeV < $M_{\pi^{0}}$ < 155 MeV
- Signal is $\tau^{\pm} \rightarrow \pi^{\pm} \nu$
 - Require no neutrals in signal hemisphere
 - Fail muon and electron PID
- $P_T > 1.2$ GeV to remove 2 photon backgrounds
- Gives 98% pure tau sample
- $60\% \tau^{\pm} \rightarrow \pi^{\pm} \nu$ decays
- Pion analysis paused while we resolve an unidentified issue
- Developing Rho analysis in the mean time for conference results
- No PID on signal removes dominant systematic

Polarization Modes

Tau Signal	Tau Tag	Status
τ→πν	$\tau \rightarrow \pi v$	Large Muon B
τ→πν	τ→evv	Large Bhabha
τ→πν	τ→πππν	Low Statistics
τ→πν	$\tau \rightarrow \pi \pi^0 v$	Unresolved Iss
$\tau \rightarrow \pi \pi^0 v$	τ→evv	In Progress
$\tau \rightarrow \pi \pi^0 v$	τ→μνν	Future Possibi
$\tau \rightarrow \pi \pi^0 v$	τ→πν	Future Possibi

Rho Event Selection

- We developed the technique on BaBar
 - Using 32.28 fb⁻¹ as a blind sample (424.18 fb⁻¹ On-peak data available)
- Signal events are $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{o} v_{\tau}$
 - One charged track, a π^{o} in 115 MeV < $m_{\pi^{0}}$ < 155 MeV
- Tag event with $\tau^{\pm} \rightarrow e^{\pm}v_{e}v_{\tau}$
 - Require no neutrals in signal hemisphere
 - Accepted by electron PID
- P_T>1.2 GeV to remove 2 photon backgrounds
- Gives 99.7% pure tau sample
- 90% $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{o} v_{\tau}$ decays

Event Selection

- Largest background source is bhabhas
- MC predicted number of events in the selected data sample

MC Type	Luminosity Weighted	Ratio
Bhabha	598	0.003
μμ	0	0.000
uds	10	0.000
СŌ	4	0.000
ττ	206089	0.997

Tau Decay	Ratio
$\tau \rightarrow e \nu$	0.000
τ→μν	0.000
τ→πν	0.000
$\tau \rightarrow \pi \pi^0 \nu$	0.900
$\tau \rightarrow \pi \pi^0 \pi^0 \nu$	0.080
τ→else	0.019

Polarization Fit

- We employ the Barlow&Beeston² template fit methodology
- MC and data is binned in 3D histograms of $\cos \omega$ vs $\cos \phi$ vs $\cos \theta$
- Polarized tau MC was generated to be able to measure the polarization
- The unpolarized MC is split into 3 statistically independent sets to make 3 data-like samples
- The data (or data-like MC) is fit as a linear combination of the templates

$$D = a_{l}L + a_{r}R + a_{b}B + a_{m}M + a_{u}U$$
$$\sum_{l} a_{l} \equiv 1$$
$$\langle P \rangle \equiv a_{l} - a_{r}$$

L=Left Polarized Tau MC, R=Right Polarized Tau MC, B=Bhabha(e⁺e⁻),M=µµ, U=uds, C=cc̄

² R. Barlow, C. Beeston; Computer Physics Communications, Volume 77, Issue 2, 1993, Pages 219-228, https://doi.org/10.1016/0010-4655(93)90005-W

osθ larization ets to make 3 data-like samples e templates

 $+a_cC$

Template Example

- Fit Projections
- Data as points
- Left Polarized Contribution is red, Right Polarized in green
- Bhabha background is dark blue

Fit Results and Systematic Uncertainties

Source	Value
Track-Neutral Association	0.0027
Pi0 Likelihood	0.0013
Neutrals, 50 MeV Cut	0.0013
$\cos arphi$	0.0013
Neutrals, 100 MeV Cut	0.0011
Pi0 Upper Mass Cut	0.0011
Angular Resolution	0.0010
Pi0 Lower Mass Cut	0.0009
Electron PID	0.0006
Backgrounds	0.0006
Event p _T	0.0006
cos ω	0.0002
Boost	0.0002
Momentum Resolution	0.0002
Rho Mass	0.0002
Branching Fraction	0.0001
Sum	0.0042

BaBar systematics, 32.28 fb⁻¹ study sample

Dataset, Rho Run 3 (32.28 Run 2 (68.19 Projected 424

o Analysis	Statistical Uncertainty
fb ⁻¹)	0.0125
fb ⁻¹)	0.0090
4.18 fb ⁻¹	0.0035

Absolute Polarization Sensitivity

 By mixing the polarized tau MC together, datalike samples with any beam polarization can be created and measured

Conclusions

- Pion Analysis identified muon PID as dominant systematic effect
 - Currently working to resolve an unidentified issue before proceeding
 - Will finish analysis in the future
- Rho Analysis is showing a similar level of sensitivity to polarization
 - Fit reported statistical uncertainty with the rho mode in 32 fb⁻¹ data of 0.0125, compared to uncertainty of 0.0112 from the pion mode
 - Approved to unblind and analyze full data set
 - Currently finished Run 2 and Run 3
 - Run 2 has ~60fb⁻¹ of data and the systematic uncertainties drop to 0.0034
 - Don't expect any further reductions with more statistics
- Pending BaBar approval will show results of Rho analysis at Lake Louise

