Particle Identification

Alan Schwartz University of Cincinnati

US Belle II Summer School Iowa State University 1 August 2022

Cerenkov radiation

- Belle II iTOP
- LHCb RICH detectors
- dE/dx and muons

The Cerenkov effect:

- When a charged particle traverses a medium with a velocity exceeding that of light in that medium, photons are radiated. The condition is v > c/n, or $\beta > 1/n$. the greater the index of refraction *n*, the lower the threshold velocity β .
- the photons are emitted at an angle:

60

50

40

30

20

10

 $p(\pi) = 0.08$

0.5

CHERENKOV ANGLE @ (DEG)

$$\cos heta_c = rac{1}{neta}$$

0.9

0.29

0.8

RELATIVE VELOCITY $\beta = v/c$

velocity

 $\Delta \theta$

A. J. Schwartz

US Belle II Summer School 2022

0.7

0.14

0.5

Particle Identification2

 $\beta = 0.995$

1.4 GeV

The light can be collected in several ways:

Measuring light yield:

Measuring Cerenkov angle (RICH):

By measuring either light yield or θ_c , one measures β , the velocity of the charged particle. Given the momentum of the particle, i.e., as measured in a spectrometer (tracking detector in a magnetic field), one determines the mass (the particle identity): $m = p/(\gamma\beta)$

A. J. Schwartz

US Belle II Summer School 2022

A. J. Schwartz

US Belle II Summer School 2022

Charged particles must be above the 1.0 Cerenkov threshold (1/n) to be detected: 99.9 0.8 GAS-CERENKOV EFFICIENCY FREON 114 (n=1,0014) Freon 114: n = 1.0014, $\beta_{thresh} = 0.9986$, $\gamma_{thresh} = 18.92$, 0.6 0.4 Ifrom Fernow. $p_{thresh}(\pi) = 2.637 \; GeV$ \Rightarrow Introduction to Experimental 0.2 Particle Physics] 0.0 2.0 2.5 3.0 3.5 PION MOMENTUM (GeV/c)

Most photons are emitted in the UV, which is hard to detect; but a generous number of photons are emitted in the visible, which matches well to mirrors, windows, and PMTs. The greater β , the greater θ_c , and the more light is radiated:

$$\begin{aligned} \frac{dN}{dx \, d\lambda} &= 4\pi \alpha \frac{1}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2} \right) \\ \Rightarrow \quad \frac{dN}{dx} &= 2\pi \alpha \int_{n\beta} \left(1 - \frac{1}{\beta^2 n^2} \right) \frac{d\lambda}{\lambda^2} \\ &\approx 2\pi \alpha \sin^2 \theta_c \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right) \\ &\approx 390 \sin^2 \theta_c \qquad (\lambda = 350 - 500 \text{ nm}) \end{aligned}$$

Note: detecting photons down to $\lambda = 330$ nm increases photon yield by 20% (390 \rightarrow 470)

A. J. Schwartz

Cerenkov Radiation: Belle II quartz (n=1.466)

Photon yield per cm of radiator

Cerenkov angle:

A. J. Schwartz

Cerenkov Radiation: LHCb

Cerenkov Radiation: LHCb

Cerenkov Radiators

N_{PE}/cm versus Refractive Index for Various Radiators

 $\begin{array}{c} \gamma_{\text{threshold}} \, \text{versus Refractive Index for} \\ & \text{Various Radiators} \end{array}$

[from Ratcliffe, Imaging Rings in Ring Imaging Cherenkov Counters, presented at RICH 2002, Pylos, Greece]

A. J. Schwartz

Belle II iTOP ("imaging time-of-propagation") Detector

A. J. Schwartz

US Belle II Summer School 2022

Belle II iTOP Detector: how it works

A. J. Schwartz

US Belle II Summer School 2022

Belle II iTOP Detector: how it works

mmer School 2022

Belle II iTOP Detector: mirror focusing

A spherical mirror focuses parallel rays to common point:

This can "remove" the thickness of the radiator bar:

Belle II iTOP Detector: time-of-propagation

Time of propagation (TOP) depends on path length and group velocity: $v_g = \frac{c}{n_g}$

This "group index" n_g differs from the "phase index" n that governs $\cos \theta_c = 1/(n\beta)$.

Also, the group index has much larger chromatic dispersion than the phase index:

dispersion

$$n(\lambda) = n(\lambda_0) - \lambda rac{dn}{d\lambda}$$

- the Cerenkov angle θ_c has very small (but non-zero) variation with photon wavelength: UV photons are emitted at slightly larger angles than IR photons
- the TOP has notable variation with photon wavelenth: UV photons propagate slower than IR photons; this degrades time resolution

A. J. Schwartz

US Belle II Summer School 2022

Belle II iTOP Detector: time-of-propagation

	Refractive Ind Data in 22°C in	ex and Dispersion 760mm Hg dry niti							
Corning 7980	Wavelength [air] λ [nm]	Refractive Index ^{*2} n		lfro	m Ratcliff	e Imaging	Rinas in		
(quartz)	1128 64	1 448870		Rin	g Imaging	Cherenko	V		
	1064.00	1 449633		Co	unters, pre	esented at	RICH		
~1.4% effect for n ~2.6% effect for TOP	1060.00	1 449681		200	02, Pylos,	Greece]			
	1013 98 n	1 450245							
	852 11 n	1 452469							
	$\frac{0.052.11 \text{ m}_{s}}{706.52 \text{ n}}$	1.152109	Refractive	e Indices ar	nd Dispersi	on versus W	/avelength	for SiO ₂	
	656.27 n	1.456370	2				<u> </u>		10
	643.85 n	1.456707							
	632 80 n	1.457021							
	589 29 n-	1.458406	× 1.9 -						
	587 56 n	1 458467	ğn						
	546 07 n	1 460082				n (group)			
	486.13 n	1.100002	. <u>≥</u> 1.8 -			— Dispersion (n)		-	1
	479 99 n	1.463509	g I			Disporsion [n ((group)]		
	435.83 n	1.466701					group)]		4
	404 66 n	1 469628	č 1.7 -			Dispersion [n (group)]/ Dispei	rsion (n)	ž
	365.01 n	1 474555							ģ
	334.15	1 479785							-
	312.57	1.484514	1.6 -					+	0.1
	308.00	1.485663							
	248.30	1.508433							
	248.00	1.508601	1.5 -						
	214.44	1.533789							
	206.20	1.542741							
	194.17	1.559012	1.4	I	I	I		_	0.01
	193.40	1.560208	0 19	0 29	0.39	0 49	0.59	0.69	
	193.00	1.560841	0.10	0.20	0.00	0.10	0.00	0.00	
	184.89	1.575131		Photo	on Wavele	ength λ (mic	crons)		

A. J. Schwartz

US Belle II Summer School 2022

Particle Identification

15

Belle II iTOP Detector: light yield

MC tuning includes measured quantum efficiency (~25%) and collection efficiency (~55%) of PMTs

A. J. Schwartz

US Belle II Summer School 2022

Belle II iTOP Detector: performance

- *iTOP particle likelihood has a contribution from* γ *yield and a contribution from position + time (* θ_c *)*
- Evaluate performance with $D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}$ or $D^{*-} \rightarrow D^{0}(\rightarrow K^{+}\pi^{-})\pi^{-}$ decays

Effic(K) = (# K tracks identified as K)/(# K tracks) MisID(π) = (# π tracks identified as K)/(# π tracks)

"ROC" curve

A. J. Schwartz

Belle II iTOP Detector: performance

- *iTOP particle likelihood has a contribution from* γ *yield and a contribution from position + time (* θ_c *)*
- Evaluate performance with $D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}$ or $D^{*-} \rightarrow D^{0}(\rightarrow K^{+}\pi^{-})\pi^{-}$ decays

Effic(K) = (# K tracks identified as K)/(# K tracks) MisID(π) = (# π tracks identified as K)/(# π tracks)

A. J. Schwartz

Bethe-Bloch formula (1933):

$$\left\langle -rac{dE}{dx}
ight
angle = K\left(rac{Z}{A}
ight)\left(rac{z^2}{eta^2}
ight)\left[\ln\left(rac{2meta^2\gamma^2}{I}
ight) -eta^2 -rac{\delta(eta\gamma)}{2}
ight]$$

 $K = 0.307 \text{ MeV mol}^{-1} \text{ cm}^2$

Complicated, but note:

- depends on material only via (Z/A), which varies little over a range of materials
- depends on incident particle via z², i.e, higher z gives much more ionization
- also depends on βγ of incident particle: broad minimum is at βγ ~ 3, sharp drop at lower values, slow rise at larger values. This corresponds to ~2 MeV/(g/cm²)
- does not depend on m of incident particle, only $\beta\gamma$ and, knowing p, that is how one uses dE/dx for particle ID.
- the 8/2 term is a small correction (the "density effect")

[from D. Groom, PDG Review "Passage of Particles Through Matter"]

A. J. Schwartz

US Belle II Summer School 2022

Bethe-Bloch formula (1933):

Finer points:

denominator "dx" is a distance, but units are grams/cm² (not cm)

- $1/\beta^2$ drop is due to less time for incident particle to interact with electrons
- "relativistic rise" is due to greater range of electric field of incident particle, and greater maximum energy transfer
- when plotting vs. particle momentum, the $\beta\gamma$ curve gets shifted; shift depends on particle mass

A. J. Schwartz

US Belle II Summer School 2022

Bethe-Bloch formula (1933):

$$\left\langle -rac{dE}{dx}
ight
angle = K\left(rac{Z}{A}
ight)\left(rac{z^2}{eta^2}
ight)\left[\ln\left(rac{2meta^2\gamma^2}{I}
ight) -eta^2 -rac{\delta(eta\gamma)}{2}
ight]$$

- This formula gives only the **mean energy loss** it is dominated by huge-energy-loss (tinyimpact-parameter) collisions, which liberate electrons (called "delta rays").
- ⇒ PDG recommends using "most probable energy loss" formula for calculations

A. J. Schwartz

dE/dx curve for CDC (all charged w/ CC)

 \Rightarrow good π/K separation up to p ~1.1 GeV/c

A. J. Schwartz

US Belle II Summer School 2022

Particle ID homework problem #1:

In the forward endcap region of Belle II is the ARICH:

4.0 cm of aerogel radiator, followed by an array of finely segmented photodetectors. The separation is 20.0 cm (see figure) and n(aerogel) = 1.050.

What is the difference in radii of the "Cerenkov rings" at the photodetectors for:

- a) π^+ and K^+ with p=3.0 GeV/c?
- b) for π^+ and K^+ with p = 4.0 GeV/c?
- c) what are the mean γ yields for these four cases?

A. J. Schwartz

US Belle II Summer School 2022

Particle ID homework problem #2:

For a μ^- to reach the KLM, it must pass through (at least) the following material:

- a) iTOP quartz: 2.0 cm @ ρ = 2.201 g/cm³
- **b) ECL CsI crystal:** 30 cm @ ρ = 4.51 g/cm³
- **c)** magnet coil Alum.: 10 cm @ ρ = 2.710 g/cm³
- **d) KLM iron (1 layer):** 4.7 cm @ ρ = 7.874 g/cm³

What is the minimum energy required for a "minimum-ionizing" $\mu^ \langle -dE/dx \rangle \approx 2 \text{ MeV} / (q/cm^2)$

to reach the first scintillator layer of the KLM?