# US Belle II Summer School 2022 

Particle Identification: Solutions

A. J. Schwartz

## Problem 1

We use the following formulae: $\beta=p / \sqrt{p^{2}+M^{2}}, \theta_{c}=\cos ^{-1}(1 / n \beta), R \approx d \tan \theta_{c}$, and $N_{\gamma}$ per $\mathrm{cm} \approx 390 \sin ^{2} \theta_{c}$. With these formulae and the constants $n=1.050$, $M\left(\pi^{+}\right)=0.139570 \mathrm{GeV} / c^{2}, M\left(K^{+}\right)=0.493677 \mathrm{GeV} / c^{2}$, and taking $d=22.0 \mathrm{~cm}$, we construct the following table:

| Particle | $\boldsymbol{p}$ <br> $(\mathbf{G e V} / \boldsymbol{c})$ | $\boldsymbol{\beta}$ | $\boldsymbol{\theta}_{\boldsymbol{c}}$ <br> $\left({ }^{\circ}\right)$ | $\boldsymbol{R}$ <br> $(\mathbf{c m})$ | $\boldsymbol{N}_{\boldsymbol{\gamma}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\pi^{+}$ | 3.0 | 0.998920 | 17.558 | 6.9611 | 142 |
| $K^{+}$ | 3.0 | 0.986729 | 15.162 | 5.9616 | 107 |
| Difference |  |  | 2.40 | 1.00 | 35 |
| $\pi^{+}$ | 4.0 | 0.999392 | 17.644 | 6.9972 | 143 |
| $K^{+}$ | 4.0 | 0.992470 | 16.3404 | 6.4501 | 123 |
| Difference |  |  | 1.30 | 0.547 | 20 |

Note that the radius of the C Cerenkov ring depends on the position at which Cerenkov photons are radiated. In this problem, photons are radiated uniformly along the path length inside the aerogel. As the aerogel has a thickness of 4.0 cm , for this calculation we use the average position inside the aerogel, i.e., the middle of the aerogel, which is 22.0 cm from the photon detector array.

## Problem 2

The total amount of material the $\mu^{-}$must traverse is:

$$
\begin{aligned}
& (2.0 \mathrm{~cm}) \cdot\left(2.201 \mathrm{~g} / \mathrm{cm}^{2}\right)+(30 \mathrm{~cm}) \cdot\left(4.51 \mathrm{~g} / \mathrm{cm}^{2}\right)+ \\
& \quad(10 \mathrm{~cm}) \cdot\left(2.710 \mathrm{~g} / \mathrm{cm}^{2}\right)+(4.7 \mathrm{~cm}) \cdot\left(7.874 \mathrm{~g} / \mathrm{cm}^{2}\right)=203.8 \mathrm{~g} / \mathrm{cm}^{2}
\end{aligned}
$$

If the $\mu^{-}$loses 2.0 MeV of energy for every $\mathrm{g} / \mathrm{cm}^{2}$ of material it passes through, it will lose 407.6 MeV of energy traversing all these layers. Thus, the minimum energy required for a $\mu^{-}$to make it to the KLM is 408 MeV .

