

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Quarkonia

Belle II US summer school August 3rd 2022 Umberto Tamponi *tamponi@to.infn.it* INFN – Sezione di Torino

NFN

A closer look at bottomonia

NFN

Big questions in spectroscopy

qq and qqq are not the only color singlets

- we are now sure there is much more!

Key question:

- How are the quarks arranged?
- Do we see molecule-like objects or something else?

Multi-quark systems are possible at any energy [Jaffe, Wilkez, PRL 91 232003 (2003)]

- proposed to describe $a_0(980)$ and $f_0(980)$ [Baru et al. PLB 586 53-61 (2004)]
- can explain inverted hierarchy in scalar mesons

^{TU} et al. PLB 586 53-61 (2004)] [Maiani et al. PRL 93 212002 (2004)] ['t Hooft et al. PLB 662 424-430 (2008)]

However, no smocking gun to distinguish qq and qqqq in the light sector

INFN

With heavy quarks separating conventional and exotics is much simpler

If a state has:

- Mass $> 3~\mbox{GeV}/\mbox{c}^2$
- Narrow (Γ/M < 0.1)
- Decaying strongly into J/ψ (or $D\overline{D}$) + something

It must contain a cc pair

What can we do with heavy hadrons?

Spectroscopy = Non perturbative QCD

 \rightarrow Can't do direct calculation, rely

on models approximating QCD

 \rightarrow Understand (solve?) QCD in the NP regime

Intermezzo: Interplay with theory

17

Peculiar features

- \rightarrow Huge number of theoretical predictions
- \rightarrow feedback loop
 - → We often discover unpredicted features
 → New knowledge feeds back to theory and enriches it

Quarkonium spectroscopy at Belle II

Quarkonia at Belle II: how?

Bottomonium

- Hadronic transitions from Y(4S)
 - Best gateway to $h_b(1P)$ and $\eta_b(1S)$!
- ISR production
- Direct production

Quarkonia at Belle II: how?

Bottomonium

- Hadronic transitions from Y(4S)
 - Best gateway to $h_b(1P)$ and $\eta_b(1S)$!
- ISR production
- Direct production

Charmonium

- $\gamma\gamma$ fusion running at Y(4S)
- B decays via b → c
- ISR production

An example: the Y(10750)

22

JHEP10(2019)220 (*Belle*):

- "High-stat" scan points: 1 fb⁻¹ each
- Some resonance appears in the ppY(nS) cross sectior

Parameters:

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
${\rm M}~({\rm MeV/c^2})$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma \ ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0}_{-6.8}{}^{+0.7}_{-1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

What is it?

Step 1: mass and quantum numbers

- J^{PC} must be 1⁻⁻
- No direct matching to conventional states (but may be an S-D mixing?)
- Can it be an exotic?

Step 2: Check theory predictions

- 1) BB : BB* : B*B* ratio is predicted by almost all models
- 2) $Y(10750) \rightarrow \omega \eta_b(1S)$ very large in one tetraquark-based model

Mode	$\mathcal{B}(4q)$ (%)	$\mathcal{B}(b\overline{b})$ (%)
$B\overline{B}$	$39.3^{+38.7}_{-22.9}$	21.3
$B\overline{B}^*$	~ 0.2	14.3
$B^*\overline{B}^*$	$52.3^{+54.9}_{-31.7}$	64.1
$B_s\overline{B}_s$	-	0.3
$\omega\eta_b$	$7.9^{+14.0}_{-5.0}$	-
$f_0(1370)\Upsilon$	$0.2^{+0.6}_{-0.2}$	-
$\omega \Upsilon$	~ 0	-

3) $M(\pi\pi)$ shape predicted by the tetraquark models

In fall 2021 Belle II took data above the Y(4S)

- ightarrow Goal: study the golden channels to characterize the Y(10750)
- \rightarrow Special data taking, lots of discussions and preparation

ightarrow If you have an idea and you like it, don' give up ;)

 $Y(10750) \rightarrow \omega \chi_b$ in the conventional quarkonium model (S-D mixing state) [Y.S. Li, et al., PRD 104, 034036 (2021)]

$$\mathcal{B}[\Upsilon(10753) \to \chi_{b0}\omega] = (0.73-6.94) \times 10^{-3},$$

$$\mathcal{B}[\Upsilon(10753) \to \chi_{b1}\omega] = (0.25-2.16) \times 10^{-3},$$

$$\mathcal{B}[\Upsilon(10753) \to \chi_{b2}\omega] = (1.08-11.5) \times 10^{-3}.$$

$$R_{12} = \frac{\mathcal{B}[\Upsilon(10753) \to \chi_{b1}\omega]}{\mathcal{B}[\Upsilon(10753) \to \chi_{b2}\omega]} = (0.18-0.22)$$

We can measure a cross section for $e^+e^- \rightarrow \omega \chi_h$

$$R_{12} = \frac{\mathcal{B}[\Upsilon(10753) \rightarrow \chi_{b1}\omega]}{\mathcal{B}[\Upsilon(10753) \rightarrow \chi_{b2}\omega]} = (0.18 - 0.22)$$

Our measurement: 1-4

Feed back to theory!

A summary

- Hadron spectroscopy is <u>one</u> way to study non-perturbative QCD
- The open problem in hadron spectroscopy is the understanding of the quark-level structure of the multi-quark particles
- Heavy hadrons offer very clear signatures
- Belle II is a key player for the upcoming years

Backup

Competing models: compact tetraquarks

Maiani et al, Phys.Rev.Lett. 93 (2004) 212002 t'Hooft et al, Phys.Lett. B662 (2008) 424430

A qq pair belongs behaves (color-wise) exactly like a \overline{q}

Structure determined by both \rightarrow q-q Interaction within di-quarks \rightarrow q-q Interaction across diquark

Good review about di-quarks: Prog. Part. Nucl. Phys. 116 (2021) 103835

Guo et al, Rev. Mod. Phys. 90, 015004 (2018)

Several exotics lay very close to a DD threshold

 \rightarrow cold be loosely bound meson-meson bound states

Molecules should always be close (or better below...) the threshold

32

Phys. Lett. B748 (2015) 183186

Also "dynamic" effects can produce resonance-like stuctures

Mapping properties: absolute BFs

Mapping properties: absolute BFs

When we observe a new state ${\sf S}$ we access

$$\mathsf{Rate} = \sigma_{\mathsf{production}}(\mathsf{S}) imes \mathsf{BF}(\mathsf{S} o \mathsf{final state})$$

Workaround: measure inclusive production BF from B mesons

- $\mathsf{B}^{\scriptscriptstyle +} \to \,\mathsf{K}^{\scriptscriptstyle +}\;\mathsf{X}$
- X not reconstructed. Use K^+ recoil
- Measure production BF

Next generation b-factories: use this method as much as possible

Future challenges: hadrons with beauty

Exotic search with Ecm < 12 GeV are challenging

 \rightarrow rely on rare, soft EM transitions

[Ali et. Al., Prog. Part. Nucl. Phys. 97 (2017) 123-198]

		charmonium-like		bottomonium-like	
Label	J^{PC}	State	Mass [MeV]	State	Mass [MeV]
X_0	0^{++}		3756		10562
X'_0	0^{++}		4024		10652
X_1	1^{++}	X(3872)	3890		10607
Z	1+-	$Z_{c}^{+}(3900)$	3890	$Z_b^{+,0}(10610)$	10607
Z'	1^{+-}	$Z_{c}^{+}(4020)$	4024	$Z_b^+(10650)$	10652
X_2	2^{++}		4024		10652
Y_1	1	Y(4008)	4024	$Y_b(10890)$	10891
Y_2	1	Y(4260)	4263	$\Upsilon(11020)$	10987
Y_3	1	Y(4290) (or $Y(4220)$)	4292		10981
Y_4	1	Y(4630)	4607		11135
Y_5	1		6472		13036

Bottomonium: alternative approaches

Exotic stats contribute to the transitions from narrow quarkonia? \rightarrow new (?) approach to heavy spectroscopy

Why is bottomonium so special?

A clean spectrum is not the only distincitve feature

- \rightarrow A QCD multi-scale system
 - \rightarrow each feature is controlled by a different scale
 - \rightarrow From perturbative to non-perturbative in one system!
- \rightarrow A lepton-pair factory
 - ightarrow BF(Y ightarrow II) \sim 2.5%
 - \rightarrow (almost) purely EM process

Charmonium is experimentally easy and accessible

- \rightarrow Direct production in e⁺e⁻ collisions \bigcirc
- \rightarrow Production in B \rightarrow K cc

- \rightarrow Photon-photon scattering $\gamma\gamma^* \rightarrow (cc)$

BESI

 \rightarrow Double Charmonium $e^+e^- \rightarrow (cc)(cc)$

 \rightarrow Prompt production Kick Statis

 \rightarrow Direct production in pp (???)

Bottom line: Charmonium will still be fully covered in the next 15 yrs.

Bottomonium is much less accessible

 \rightarrow Direct production in e⁺e⁻ collisions $\frac{2}{2}$

Bottom line: after Belle II, bottomonium studies will havestrong limitations

- \rightarrow The only exotica to have been observed in several different conditions
- \rightarrow A narrow peak \sim at the DD* threshold
- \rightarrow Same quantum numbers as a $\chi_{_{\rm C1}}(2{\rm P}),$ completely different properties

Is there an X(3872) counterpart?

41

Why no X_h ?

0++

1++

The X(3872) may generated by a peculiar coincidence

2++

No $\chi_{_{b}}$ is near the BB* threshold, no $X_{_{b}}$

D*

D⁺

Statistics in bottomonium is still too limited. Need to set a stronger UL to rule out the X_{b} tetraquark hypothesis

The ground states

43

Y(5S) and Y(6S): new exotica

 \rightarrow If the $Z_{_b}$ is a loosely bound state, then several other molecules must appear \rightarrow No predictions on the production rates

Mod. Phys. Lett. A 32, 1750025 (2017)

$I^G(J^P)$	Name	Composition	Co-produced particles [Threshold, GeV/c^2]	Decay channels
$1^+(1^+)$	Z_b	$Bar{B}^*$	π [10.75]	$\Upsilon(nS)\pi, h_b(nP)\pi, \eta_b(nS)\rho$
$1^+(1^+)$	Z_b'	$B^*\bar{B}^*$	π [10.79]	$\Upsilon(nS)\pi, h_b(nP)\pi, \eta_b(nS)\rho$
$1^{-}(0^{+})$	W_{b0}	$Bar{B}$	ρ [11.34], γ [10.56]	$\Upsilon(nS) ho, \eta_b(nS)\pi$
$1^{-}(0^{+})$	W_{b0}^{\prime}	$B^*\bar{B}^*$	$ ho$ [11.43], γ [10.65]	$\Upsilon(nS) ho, \eta_b(nS)\pi$
$1^{-}(1^{+})$	W_{b1}	$Bar{B}^*$	$ ho$ [11.38], γ [10.61]	$\Upsilon(nS) ho$
$1^{-}(2^{+})$	W_{b2}	$B^*\bar{B}^*$	$ ho$ [11.43], γ [10.65]	$\Upsilon(nS) ho$
$0^{-}(1^{+})$	X_{b1}	$Bar{B}^*$	η [11.15]	$\Upsilon(nS)\eta, \eta_b(nS)\omega$
$0^{-}(1^{+})$	X'_{b1}	$B^*ar{B}^*$	η [11.20]	$\Upsilon(nS)\eta, \eta_b(nS)\omega$
$0^+(0^+)$	X_{b0}	$Bar{B}$	ω [11.34] γ [10.56]	$\Upsilon(nS)\omega,\eta_b(nS)\eta$
$0^+(0^+)$	X_{b0}^{\prime}	$B^*ar{B}^*$	ω [11.43] γ [10.65]	$\Upsilon(nS)\omega,\eta_b(nS)\eta$
$0^+(1^+)$	X_b	$Bar{B}^*$	ω [11.39] γ [10.61]	$\Upsilon(nS)\omega$
$0^+(2^+)$	X_{b2}	$B^*\bar{B}^*$	ω [11.43] γ [10.65]	$\Upsilon(nS)\omega$

