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Introduction
● FCNC forbidden at tree-level in SM
● Sensitive to NP/BSM physics
● May be fruitful to study b → s processes
● A. Sibidanov has implemented improved EvtGen MC model for B → K*ll

– Improved SM calculations in OPE
– BSM physics from generic d-6 operators can be set by user in EvtGen decay file by setting δCi = Ci(eff) 

– Ci(SM)
● Use machine learning (ML) and likelihood-free inference (LFI) methods to try and extract NP 

information in B → K*ll MC sample
– Use ML and template fitting to try and determine NP parameters; not simply background suppression
– Proof-of-concept with signal MC; does not yet include detector response simulation
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Introduction
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Introduction

C’s are Wilson Coefficients (WC); contain information about short-distance effects.



  5

Introduction



  6

Introduction



  7

Introduction

● Question:  Can machine learning (ML) be used 
to distinguish between data that exhibit 
signatures due to SM or NP?
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Introduction

● Question:  Can machine learning (ML) be used to 
distinguish between data that exhibit signatures due 
to SM or NP?
– Use minimal set of variables to train a neural network 

(NN)
– Use NN output distributions as templates perform binned 

template fitting to estimate “best fit” value for the δC9 WC
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Machine Learning
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Machine Learning

● “[Machine Learning is the] field of study that 
gives computers the ability to learn without 
being explicitly programmed.”
– Arthur Samuel, 1959; taken from “Hands-On 

Machine Learning with Scikit-Learn, Keras & 
TensorFlow” by A. Geron
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Neural Network

● Artificial Neural Networks (ANNs) are machine 
learning models that try to learn by modeling 
the connected neurons in the brain
– Detail of ANNs outside of scope
– See “Hands-On Machine Learning with Scikit-

Learn, Keras & TensorFlow” by A. Geron to learn 
more 
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Neural Network: Model

● Use the Keras API to build a NN
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Neural Network: Model
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Neural Network: Inputs

● Ideally use a minimal set of training variables
– Similar methods used in LHCb analyses but use many 

variables (pT, E, m, angular info, etc.) for NN training
– Want to reduce the training problem to only angular 

information and q2

● Proof of concept: use AFB and S5, angular asymmetry 
variables, q2, and nothing else, to train NN
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Neural Network: Inputs

See backup.
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Neural Network: Training

● Training the NN with these inputs
● Balanced training set
● Reserve 20% for test set
● Use 20% for validation during training
● ReduceLROnPlateau

– Monitor the val_loss and reduce LR when no improvement
● Training proceeds well, do not see signs of overtraining

– Avoid over training by using larger MC data samples
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Neural Network: Training
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Neural Network: Training
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Neural Network: Training
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Results
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Results: Overview

● Used binned template fitting to fit the NN output distribution
– Distribution contains all information necessary: q2 and angular 

information
● Use pyhf for template fitting

– Generate several high-statistics MC samples for different δC9 
values for templates and “data”

● Fitting gives NLL values → obtain curve without explicit form of LH 
(LFI) → δC9 value with min NLL is the “best fit” value 
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Results: pyhf Implementation
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Results: Linearity Test
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Results: Linearity Test
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Results: Linearity Test
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Results: Linearity Test

(e.g.)
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Results: Linearity Test
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Results: Linearity Test

● Good start
● Small(ish) but non-zero bias
● Some type of pathology in the asymmetric errors
● But method seems to point to being able to 
extract NP information; will continue to iterate to 
reduce the bias
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Conclusion
● Used a NN trained with angular info and q2 to implement a LFI

– Useful since it can extract NP information from all higher dim data without needing to perform a 
complicated fit 

● Linearity indicates this may be a reasonable method to use to extract NP information at Belle 
II
– Implemented in some LHC analyses but not Belle(II)

● Hope to improve this then move on to simply using angular information, binned in q2, rather 
than variables like AFB and S5

● Done in collaboration with T.E. Browder (U. Hawaii Manoa), S. Kohani (U. Hawaii Manoa), R. 
Mandal (IIT Gandhinagar), S. Sandilya (IIT Hyderabad), A. Sibidanov (U. Hawaii Manoa), R. 
Sinha (IMSc, U. Hawaii Manoa), and S.E. Vahsen (U. Hawaii Manoa)

● A similar program is planned for B → D* l nu, with another group 
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Backup
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Backup: Machine Learning Jargon

● Hyperparameter
– parameter of learning algorithm (A. Geron)

● Examples
– learning rate
– number of hidden layers
– batch size
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Backup: Machine Learning Jargon

● Activation function
– A function that computes the output of a layer of 

neurons
● Different functions for different purposes

– Ones used in this study
● Scaled Exponential Linear Unit (SELU)
● Sigmoid
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Backup: Machine Learning Jargon

● Loss
– A function that compares the output of the NN to the desired output

● Used (by gradient descent) to train a model
● Many functions for many purposes

– Binary cross-entropy used in this study

● Metric
– Used to evaluate a model

● Many types of metrics
– accuracy used in this study
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Backup: Machine Learning Jargon

● Optimizer
– “Optimizers are algorithms or methods used to change 

the attributes of your neural network such as weights 
and learning rate in order to reduce the losses.”

● https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6

– Use the Nadam optimizer in this study
● See A. Geron, Ch. 11 for definition

https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
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Neural Network: Inputs
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