R(D) and R(D*) with an inclusive tagging method at Belle II

Boyang Zhang <u>zhangboy@hawaii.edu</u> 2022 Belle II Summer Workshop

Contents

- 1. Introduction P(D) and P(I)
 - a. R(D) and $R(D^*)$
 - b. Tagging methods
- 2. Workflow
- 3. Event reconstruction
- 4. BDTs
- 5. Fitting and yield extraction
- 6. Summary

R(D) & R(D*)

Motivation:

1. Direct tests for Lepton Flavor Universality in the weak interaction;

$$\Gamma(B \to D \ e \ v_e) \propto \left(\frac{g_2}{M_W} \ \frac{g_e}{M_W}\right)^2 |V_{cb}|^2 \ m_B^5 \ F_{B \to D}^{e, \ \mu} \left(q^2\right) PS^e$$

$$R(D^{*})_{light} = \frac{BF(B \to D^{*} e v_{e})}{BF(B \to D^{*} \mu v_{\mu})} = \frac{\Gamma(B \to D^{*} e v_{e})}{\Gamma(B \to D^{*} \mu v_{\mu})} = \left(\frac{g_{e}}{g_{\mu}}\right)^{2} \frac{F_{B \to D^{*}}^{e, \mu}(q^{2})}{F_{B \to D^{*}}^{e, \mu}(q^{2})} \frac{PS^{e}}{PS^{\mu}}$$

 $\mathcal{R}(D^{(*)})_{\text{light}} = 1.01 \pm 0.01 \pm 0.03$

 $R(X_{e/\mu})^{p_{\ell}^*>1.3\,\text{GeV}} = \mathbf{1}.\,\mathbf{033}\pm\mathbf{0}.\,\mathbf{010}^{\text{stat}}\pm\mathbf{0}.\,\mathbf{020}^{\text{syst}}$

Waheed et al. Belle Collaboration 2019

 $g_2 V_{cb}^* / \sqrt{2}$

ICHEP, H. Junkerkalefeld, Belle II, 2022

R(D) & R(D*)

Motivation:

- 1. Direct tests for Lepton Flavor Universality in the weak interaction;
- 2. Sensitive probes for new physics (e.g. leptoquarks);
- 3. Can be measured with high precision (recon the signal and norm modes with the same procedure, most of systematic errors cancel, except lepton efficiency etc.);

$$R(D) = \frac{BF(B \to D \tau v_{\tau})}{BF(B \to D l v_l)} = \frac{\Gamma(B \to D \tau v_{\tau})}{\Gamma(B \to D l v_l)} = \left(\frac{g_{\tau}}{g_{e, \mu}}\right)^2 \frac{F_{B \to D}^{\tau}\left(q^2\right)}{F_{B \to D}^{e, \mu}\left(q^2\right)} \frac{PS^{\tau}}{PS^{e, \mu}} \qquad l = e \text{ or } \mu$$

Measured and SM predicted R(D) & R(D*)

Obs.	Current World Av./Data	Current SM Prediction	Significance
$\mathcal{R}(D)$	0.340 ± 0.030	0.299 ± 0.003	1.2σ
$\mathcal{R}(D^*)$	0.295 ± 0.014	0.258 ± 0.005	$2.5\sigma \int^{5.10}$

Semileptonic tagging R(D)(*)

Desult	Contribution	Uncertainty [%]	
Result	Contribution	Sys.	Stat.
	$B \to D^{**} \ell \bar{\nu}_{\ell}$	0.8	
	PDF modeling	4.4	
	Other bkg.	2.0	
$\mathcal{R}(D)$	$\epsilon_{ m sig}/\epsilon_{ m norm}$	1.9	
	Total systematic	5.2	
	Total statistical		12.1
	Total	13	3.1
	$B \to D^{**} \ell \bar{\nu}_{\ell}$	1.4	
	PDF modeling	2.3	
$\mathcal{R}(D^*)$	Other bkg.	1.4	
	$\epsilon_{\rm sig}/\epsilon_{\rm norm}$	4.1	
	Total systematic	4.9	
	Total statistical		6.4
	Total	8	.1

Belle19

Heavy FLavor AVeraging group has calculated world averages from all the available data

More data or new method is needed

 \rightarrow Belle II experiment and inclusive tagging method

Tagging methods

If one of the B mesons decays to a final state involving neutrinos, this B meson cannot be reconstructed completely.

1. Introduction

2. Workflow

- 3. Event reconstruction
- 4. BDTs
- 5. Fitting and yield extraction
- 6. Summary

Workflow

- 1. Introduction
- 2. Workflow
- 3. Event reconstruction
- 4. BDTs
- 5. Fitting and yield extraction
- 6. Summary

D decay modes

$B^0 \rightarrow D^+ \tau^- \nu$	Boyang
D ⁺ decay modes	Branching fraction
$D^+ \rightarrow K^- \pi^+ \pi^+$	(9.38±0.16)%
$B^- \rightarrow D^0 \tau^- \nu$	Tia
D ⁰ decay modes	Branching fraction
$D^0 \rightarrow K^- \pi^+$	(3.88 ± 0.05) %
$D^0 \rightarrow K^- \pi^+ \pi^0$	(13.9 ± 0.5) %
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	(8.08 ± 0.20) %

D0 has more D* and D** feed down

D+ has longer lifetime so that provides better vertex separation/fitting

D+ $c\tau = 311.8\mu m$ D0 $c\tau = 122.9\mu m$

au decay modes	Branching fraction	
$\tau \rightarrow e \nu \nu$	(17.83±0.04)%	
$\tau \to \mu \nu \nu$	(17.41±0.04)%	

Event reconstruction for B -> D⁺ l ...

Signal Side (Efficiency ~20%)

Reconstruct a vertex whose daughters are D + I ()	Select good tracks + bremsstrahlung photons	Tag(ROE)
	Final state Pid cuts + lepton momentum cuts D mass cut + vertex fit (D vertex and B vertex)	e^{\pm} γ μ^{\pm}
ROE side (Efficiency ~15% with BDTs)		
	Track masks + ECL masks	Signal $\overline{B^0}$ $\overline{B^0}$
Best Candidate Selection (~1.2 candidates per event)	Signal side vertex reduced chi2	K D^+ v
This will reconstruct all at once	(D* and D** decay to D with extra pi or photon)	π^+ e^-
R(D) signal: $B \rightarrow D^+ \tau \nu$	R(D) Normalization: $B \rightarrow D^+ I v$	
$R(D^*) \text{ signal: } B \to D^{*+} \tau v$	R(D*) Normalization: $B \rightarrow D^{*+} v$	
$B \rightarrow D^{**} \tau \nu$ background	$B \rightarrow D^{**} I v$ background	

MM^2 calculation

To separate the signals and normalizations, calculated with ROE variables

$$\begin{split} MM^{2} &= \left(p_{tot}^{*} - p_{ROE}^{*} - p_{Y}^{*}\right)^{2} \\ &= \left(E_{tot}^{*} - E_{ROE}^{*} - E_{Y}^{*}\right)^{2} - \left(\vec{P}_{tot}^{*} - \vec{P}_{ROE}^{*} - \vec{P}_{Y}^{*}\right)^{2} \\ &\approx \left(\frac{1}{2}E_{tot}^{*} - E_{Y}^{*}\right)^{2} - \left(\vec{P}_{ROE}^{*} + \vec{P}_{Y}^{*}\right)^{2} \\ &= \left(\frac{1}{2}E_{tot}^{*}\right)^{2} + \left(E_{Y}^{*}\right)^{2} - E_{tot}^{*} \times E_{Y}^{*} - \left(\left|\vec{P}_{ROE}^{*}\right|^{2} + \left|\vec{P}_{Y}^{*}\right|^{2} + 2\vec{P}_{ROE}^{*} \cdot \vec{P}_{Y}^{*}\right) \\ &= \left(\frac{1}{2}E_{tot}^{*}\right)^{2} - \left|\vec{P}_{ROE}^{*}\right|^{2} + \left(E_{Y}^{*}\right)^{2} - \left|\vec{P}_{Y}^{*}\right|^{2} - E_{tot}^{*} \times E_{Y}^{*} - 2\vec{P}_{ROE}^{*} \cdot \vec{P}_{Y}^{*} \\ &= \left(M_{bc}^{ROE}\right)^{2} + M_{Y}^{2} - E_{tot}^{*} \times E_{Y}^{*} - \left(2\vec{P}_{ROE}^{*}\right)\vec{P}_{Y}^{*} \end{split}$$

where
$$p_{Y} = p_{D} + p_{l}$$

Reconstruction

MC14rd generic (charged + mixed + qqbar + taupair) 65/fb

Reconstructed only in $\tau \rightarrow \mathbf{e} v v$ mode;

Bottom plot: MM^2

Cut Flow	sigEff	bkgEff
No cut	100.00%	100.00%
D_vtxReChi2<13	95.22%	
B0_vtxReChi2<14	93.09%	
5.03 <b0_roembc_my_mask< td=""><td>87.42%</td><td></td></b0_roembc_my_mask<>	87.42%	
-3.5 <b0_roedeltae_my_mask<0.5< td=""><td>83.98%</td><td></td></b0_roedeltae_my_mask<0.5<>	83.98%	
4.65 <b0_cms1_wembc< td=""><td>81.13%</td><td></td></b0_cms1_wembc<>	81.13%	
-2.2 <b0_cms0_wedeltae<0.5< td=""><td>79.21%</td><td></td></b0_cms0_wedeltae<0.5<>	79.21%	
-3 <b0_deltae<-1< td=""><td>78.77%</td><td></td></b0_deltae<-1<>	78.77%	
abs(B0_roeCharge_my_mask)<3	77.13%	
e_CMS_p > 0.2	77.12%	
B0_vetoeID 0.9 B0_vetomuID 0.9	53.65%	11.05%

- 1. Introduction
- 2. Workflow
- 3. Event reconstruction

4. BDTs

- 5. Fitting and yield extraction
- 6. Summary

Fast BDTs:

- 1. Continuum suppression
- 2. Fake D
- 3. Other BBbar bkg

Hyperparameters:

- nTrees = 1400
- Depth = 2
- Learning_rate = 0.05
- nCutLevels = 5
- Sub_sample_fraction = 0.5

MM^2 after BDTs + roeMbc>5.26

MC14rd generic 65/fb Reconstructed only in $\tau \rightarrow e v v$ mode;

- 1. Introduction
- 2. Workflow
- 3. Event reconstruction
- 4. BDTs
- 5. Fitting and yield extraction
- 6. Summary

2D template fitting with pyhf:

84/fb template 65/fb data(MC)

Templates

Generic MC14rd 65/fb after BDTs

 $|p_D| + |p_l| [GeV]$

Fitting Results

D	_tau_	_nu counts:	500
D	_tau_	_nu counts uncertainty:	278

D_I_nu counts:	5139
D_I_nu counts uncertainty:	151

Dst_tau_nu counts: 2e-09 Dst_tau_nu counts uncertainty:84

Dst_l_nu counts:	3096
Dst_l_nu counts uncertainty:	202

MC truth: D_tau_nu:	307
D_I_nu:	5122
Dst_tau_nu:	168
Dst_l_nu:	4024

Projections of fitted templates

Projections of fitted templates

- 1. Introduction
- 2. Workflow
- 3. Event reconstruction
- 4. BDTs
- 5. Fitting and yield extraction
- 6. Summary

Summary

This analysis tests the lepton universality

Get R(D) and R(D^{*}) with one reconstruction [optimized based on R(D)]

Many systematic uncertainties cancel due to the double ratio

Use BDTs to maximize the separating power between different components

Tagging efficiency is high, ~15%:

• Everything is done with only 84/fb (BDT training, fitting). Performance can be improved with bigger sample 700/fb

B tagging	Experiment	Algorithm	B^{\pm}	B^0
	Belle II	FEI	0.76%	0.46%
II. Januia	Belle II	FEI (FR channels)	0.53%	0.33%
Hadronic	Belle	FR	0.28%	0.18%
	BABAR	SER	0.4%	0.2%
Semileptonic	Belle II	FEI	1.80%	2.04%
	Belle	FR	0.31%	0.34%
	BABAR	SER	0.3%	0.6%

Thank you

Backup

Dalitz plot used in BDT

MC14rd generic D_daughterInvM_1_2 vs. D_daughterInvM_0_1

D_daughterInvM_0_1

Fitting Results sig

Fitted:		MC truth:	
D_tau_nu counts: D_tau_nu counts uncertainty:	500 278	D_tau_nu:	307
D_I_nu counts: D_I_nu counts uncertainty:	5139 151	D_l_nu:	5122
Dst_tau_nu counts: Dst_tau_nu counts uncertaint	2e-09 y: 84	Dst_tau_nu:	168
Dst_I_nu counts: Dst_I_nu counts uncertainty:	3096 202	Dst_l_nu:	4024
Dstst_tau_nu counts: Dstst_tau_nu counts uncertai	8e-13 nty: 41	Dstst_tau_nu:	42
Dstst_I_nu counts: Dstst_I_nu counts uncertainty	4e-09 : 72	Dstst_l_nu:	952

Fitting Results bkg

Fitted:

bkg_fakeD counts: bkg_fakeD counts uncertainty:	7104 522	fake_D:	5053	
bkg_combinatorial counts: bkg_combinatorial counts uncertainty:	764 187	combinatorial:	998	
bkg_sigOtherBDTaudecay counts: bkg_sigOtherBDTaudecay counts uncerta	521 ainty: 236	OBDTau:	913	
bkg_recoFakeTracksClusters counts: bkg_recoFakeTracksClusters counts unce	3e-07 ertainty: 212	FakeT/C:	228	
bkg_continuum counts: bkg_continuum counts uncertainty:	437 202	Continuum:	555	
bkg_others counts: bkg_others counts uncertainty:	1902 188	Others:	1080	

MC truth:

Optimization of ROE mask

Optimization of ROE mask (tracks)

Tracks	ECL Clusters
nCDCHits>0 and thetaInCDCAcceptance and pt>0.075 and	goodGamma and abs(clusterTiming) <clustererrortiming and<="" td=""></clustererrortiming>
[pt<0.15 and (dr^2/64+dz^2/400)<1] or	[E<0.1 and beamBkgMVA>0.2 and minC2TDist>25]
[0.15 <pt<0.25 (dr^2="" 225)<1]="" 64+dz^2="" and="" or<="" td=""><td>[0.1<e<0.2 and="" beambkgmva="">0.4 and minC2TDist>25 and clusterZernikeMVA>0.05] or</e<0.2></td></pt<0.25>	[0.1 <e<0.2 and="" beambkgmva="">0.4 and minC2TDist>25 and clusterZernikeMVA>0.05] or</e<0.2>
[0.25 <pt<0.5 (dr^2="" 100)<1]="" 36+dz^2="" and="" or<="" td=""><td></td></pt<0.5>	
	[0.2 <e<0.5 and="" beambkgmva="">0.4 and</e<0.5>
[0.5 <pt<1 (dr^2="" 16)<1]="" 9+dz^2="" and="" or<="" td=""><td>minC2TDist>20 and clusterZernikeMVA>0.05] or</td></pt<1>	minC2TDist>20 and clusterZernikeMVA>0.05] or
[pt>1 and (dr^2/0.64+dz^2)<1]	[E>0.5 and beamBkgMVA>0.5]

Uncertainties	,
---------------	---

				Systematic uncertainty [%]			Total uncert. [%]				
Result	Experiment	τ decay	Tag	MC stats	$D^{(*)}l\nu$	$D^{**}l\nu$	Other bkg.	Other sources	Syst.	Stat.	Total
$\mathcal{R}(D)$	BABAR ^a	$\ell \nu \nu$	Had.	5.7	2.5	5.8	3.9	0.9	9.6	13.1	16.2
	$Belle^{b}$	$\ell \nu \nu$	Semil.	4.4	0.7	0.8	1.7	3.4	5.2	12.1	13.1
	$\operatorname{Belle}^{\mathbf{c}}$	$\ell \nu \nu$	Had.	4.4	3.3	4.4	0.7	0.5	7.1	17.1	18.5
$\mathcal{D}(D^*)$	BABAR ^a	$\ell \nu \nu$	Had.	2.8	1.0	3.7	2.3	0.9	5.6	7.1	9.0
	$\operatorname{Belle}^{\mathrm{b}}$	$\ell \nu \nu$	$\mathbf{Semil.}$	2.3	0.3	1.4	0.5	4.7	4.9	6.4	8.1
	$Belle^{c}$	$\ell \nu \nu$	Had.	3.6	1.3	3.4	0.7	0.5	5.2	13.0	14.0
$\mathcal{K}(D^{-})$	$\operatorname{Belle}^{\operatorname{d}}$	$\pi\nu, \rho\nu$	Had.	3.5	2.3	2.4	8.1	2.9	9.9	13.0	16.3
	$\rm LHCb^{e}$	$\pi\pi\pi\pi(\pi^0) u$	l	4.9	4.0	2.7	5.4	4.8	10.2	6.5	12.0
	$\mathrm{LHCb}^{\mathrm{f}}$	$\mu \nu \nu$		6.3	2.2	2.1	5.1	2.0	8.9	8.0	12.0

Significance

0.2σ and 1.1σ are observed in the semileptonic paper for R(D) and R(D*) respectively

Obs.	Current World Av./Data	Current SM Prediction	Signi	ificance
$\overline{\mathcal{R}(D)}$	0.340 ± 0.030	0.299 ± 0.003	1.2σ	$\Big _{21\sigma}$
$\mathcal{R}(D^*)$	0.295 ± 0.014	0.258 ± 0.005	2.5σ	$\int^{3.10}$
$P_{\tau}(D^*)$	$-0.38\pm0.51^{+0.21}_{-0.16}$	-0.501 ± 0.011	0.2σ	
$F_{L,\tau}(D^*)$	$0.60 \pm 0.08 \pm 0.04$	0.455 ± 0.006	1.6σ	
$\mathcal{R}(J\!/\!\psi)$	$0.71 \pm 0.17 \pm 0.18$	0.2582 ± 0.0038	1.8σ	
$\mathcal{R}(\pi)$	1.05 ± 0.51	0.641 ± 0.016	0.8σ	
$\mathcal{R}(D)$	0.337 ± 0.030	0.299 ± 0.003	1.3σ	26-
$\mathcal{R}(D^*)$	0.298 ± 0.014	0.258 ± 0.005	2.5σ	$\int 3.0\sigma$

More data expected from Belle II

R(D) & R(D*)

My interest:

- 1. I will study the modes: $B \rightarrow D(^*) \tau v$ and $B \rightarrow D(^*) | v$
- I will measure R(D) and R(D*) (ratio, but not absolute branching fractions)

 $R(D^*) = \frac{\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D^* \ell^- \bar{\nu}_\ell)}$

 $R(D) = \frac{\mathcal{B}(\bar{B} \to D\tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D\ell^- \bar{\nu}_\ell)}$