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Method of Maximum Likelihood

The method of maximum Likelihood is a technique for estimating the values of model

parameters given a finite sample of data.

L(θ) =
n∏

i=1

f (xi , θ), (1)

The Likelihood function L is the joint probability distribution of the sample, only

depending on the model parameter(s) θ, viewing the measured data xi as fixed. We

determine the model parameter θ which maximizes the probability to draw the sample

data by by maximizing the Likelihood

∂L
∂θi

= 0, i = 1, . . .m. (2)

To get the best possible result for the parameter estimation, ideally all information for

the model is encoded into the Likelihood.

1



Method of Maximum Likelihood

We usually use the negative logarithm of the Likelihood function:

−2 lnL(θ) = −2
n∑

i=1

ln f (xi , θ). (3)

The reasons are:

• There are only minimizes on the market.

• Calculating the product of many small values is not computational stable.

• The 2 is just convention, but important in the common way to interpret

Likelihood Profiles (more later).
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Method of Maximum Likelihood for Templates i

In this talk, we will discuss the method of maximum Likelihood when we use templates

for our model. This is useful, e.g. when we do not have a good parameterization for

the model and we want to rely on the event generator plus detector simulation.

⇒ The probability density function f (xi |θ) of our model is approximated by a

histogram with n bins. The content of each bin follows a Poisson distribution P(ni |νi ).

The Likelihood function becomes

L =
bins∏
i=1

P(ni |νi ). (4)

Let us decompose this . . .

3



Method of Maximum Likelihood for Templates ii

L =
bins∏
i=1

P(ni |νi ).

(5)

• The Poisson distribution P, the number of measured events ni in bin i and the

number of expected events νi in bin i .

• The expectation νi =
∑templates

k fikηk , where ηk is the total number of expected

events for template k and fik is the fraction of events expected in bin i of

template k .

• The fractions are defined as fik = ηik∑bins
j=1 ηjk
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Asimov Data

A useful tool for developing and testing your fits is the Asimov Data. You substitute

the ”recorded data” with a data sample which corresponds your expectation on MC.

• In comparison to a toy sample, your expectations on the fit result are known. This

helps debugging. Toy MC is still a useful test to check your fit e.g. for bias.

• Caveat: You have to round your MC expectation to integer values.

L =
bins∏
i=1

P(ni |νi ) (6)

• ni : data in bin i

• νi : background plus signal expectation

in bin i
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Fit Result

Pre-Fit Post-Fit
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Determining Uncertainty on the Fitted Parameter

νbkg νsig
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First Summary

• We minimize the Likelihood function L to determine our model parameter.

• So far, we did not include any uncertainties on our fit model.

• Uncertainties can arise from different sources:

• Limited statistics for our templates (we can not produce infinite MC).

• Theory uncertainties, e.g. uncertainty on a parameter which is used in the event

generator.

• Uncertainties on tracking efficiency or lepton ID.

• In the following we provide recipes for including systematic uncertainties into the

fit.
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Adding Systematics
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Bin-Wise Uncertainties: MC Statistics i

The limited MC statistics is an uncorrelated uncertainty for each bin (pure statistical

errors are not correlated).

• For each template k, we have a statistical uncertainty σk
i in each bin i .

• The correlation matrix Σ is diagonal. Σk = 1,

To include this uncertainty into the fit, we introduce a vector of nuisance parameters
~θ = ~θk , k = 1, ..., nTemplates and modify our Likelihood function:

L =
bins∏
i=1

P(ni |νi (~θ))×
templates∏

k

N (~θk |0,Σk) (7)

Let us decompose this . . .
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Bin-Wise Uncertainties: MC Statistics ii

L =
bins∏
i=1

P(ni |νi (θ))×
templates∏

k

N (θ|0,Σk) (8)

• The normal distribution N (θk |0,Σk) ensures that the nuisance parameters only

vary within their Gaussian uncertainty. We need one Normal distribution and

correlation matrix for each template. In general, we can include other constraints,

e.g. a Log-Normal, if the pull is only allowed to be positive.

• ~θ = ~θk , k = 1, ..., nTemplates (here k=2).

• The expectation value has to be modified by νik → νik(θ)
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Bin-Wise Uncertainties: MC Statistics iii

νi (θ) =

templates∑
k

fik(θk)ηk (9)

fik(θk)→ ηik(1 + θikεik)∑bins
k ηjk(1 + θjkεjk)

(10)
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Fit Result

Pre-Fit Post-Fit
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Determining Uncertainty on the Fitted Parameter

νbkg νsig

• No difference between the full Likelihood profile and statistical only.

• We have a lot of MC statistics, so we do not expect and influence here.
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Pulls on Nuisance Parameters

• We fit an Asimov sample, no pulls

expected.

• The fit can not constrain any nuisance

parameters here.
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Bin-Wise Uncertainties: Theory Uncertainty i

Our background model is based on an exponential function: E(λ = 2). What if we are

not sure about λ, i.e. λ = 2± 0.2? We incorporate this uncertainty into our

background template.

• We have a simple model, which only depends on one model parameter.

• To determine the influence on the template, we vary the model parameter and

generate new templates
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Bin-Wise Uncertainties: Theory Uncertainty ii

Each bin has an uncertainty σmodel
i . To determine the total uncertainty from the model

parameters in each bin:

• Diagonalize the covariance matrix,

vary the covariance matrix ± an

eigenvalue, transform back.

• Generate new templates with the up

and down variation.

• σi = sign(σ−i )(|σ−i |+ |σ
+
i |)/2

• This uncertainty is 100% correlated.

• The covariance matrix is generated by

C = σmodel
i ⊗ σmodel

i .
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Bin-Wise Uncertainties: Theory Uncertainty iii

We already introduced nuisance parameters per bin before. We now simply modify

what we use in the Likelihood for our background template.

• Add up covariance matrices from different sources Cbkg = Cbkg
stat + Cbkg

model

• → εi ,bkg = εstat
i ,bkg + εmodel

i ,bkg

Done! We re-run the fit.

Caveat: You have to invert the covariance matrix in the Likelihood. A covariance

matrix with 100% correlation is singular. However, we already added the statistical

uncertainties which are uncorrelated, resolving this issue.
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Fit Result

Pre-Fit Post-Fit
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Determining Uncertainty on the Fitted Parameter

νbkg νsig

• The model uncertainty has an impact on our Likelihood profile (we expect this,

the uncertainty is 10%)
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Pulls on Nuisance Parameters

• We fit an Asimov sample, no pulls

expected.

• The fit is able to constrain the

nuisance parameter which describe the

model uncertainty.
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Source-Wise Uncertainties: Model Uncertainty i

An alternative approach to include the uncertainty of our background model

E(x |λ = 2± 0.2) is to include it with a single nuisance parameter. If the systematic is

correlated, we can add the systematic uncertainty not bin-wise but source wise.

L → L×
sources∏

j

N (θj |0, 1), (11)

with νi → νi (1 + εiθ). This introduces a single nuisance parameter per source. The

error amplitude has to encode the (anti-)correlation. 100% correlation is implied
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Source-Wise Uncertainties: Model Uncertainty ii

Nuisance per source

• Post-fit you can check on which

error source the fit tries to pull.

Nuisance per bin

• Post-fit you can check on which

bin the fit tries to pull.
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Source-Wise Uncertainties: Tracking Uncertainty i

The tracking uncertainty has an impact on the uncertainty of the signal yield. To

include this, we add the tracking uncertainty into the Likelihood by transforming

ηk → ηk(1 + εtrackingθk,tracking ), k = sig. (12)

• This is a single nuisance parameter in that case.

• We assume it is constant over the range of the measured quantity.

• We can add more than one uncertainty this way:

ηk → ηk
∏uncertainties

m (1 + εmθk,m), adding a nuisance parameter for each source.

All done! We re-run the fit.
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Fit Result

Pre-Fit Post-Fit
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Determining Uncertainty on the Fitted Parameter

νbkg νsig

• Now the Likelihood gets even broader, as we introduced an additional systematic

uncertainty.

• For multiplicative uncertainties, the best fit point will be θk,tracking = 0, as it is

always cheaper to vary νsig than the constraint nuisance parameter.
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Pulls on Nuisance Parameters

• We fit an Asimov sample, no pulls

expected.

• The fit is able to constrain the

nuisance parameter which describe the

model uncertainty.
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Validating the Fit Model
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Validating the Fit Model i

So far, we used the Asimov sample to develop our fit. This is nice, because we can

compare the result with out expectation. However, it is not sufficient to test our fit for

bias. To validate that our fit is unbiased and stable we can draw so-called toy samples

from our expectation.

• Draw from a Poisson distribution P(n|νtotal
expected) for each bin.

• We perform the fit for Ntoy times and check our parameter of interest νsig via

Pull =
νsig

fit −ν
sig
expected

σ(νsig
fit )

for each fit result.

• We can do this with every parameter in the model.

• This distribution has to follow a normal distribution with N (0, 1).
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Validating the Fit Model ii

Applying this method to our problem, we find that the fit is stable and unbiased.

νbkg νsig
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Unleash the Fit on Real Data
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Fit Result

Pre-Fit Post-Fit
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Determining Uncertainty on the Fitted Parameter

νbkg νsig
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Pulls on Nuisance Parameters

• The fit tries to pull on the nuisance

parameters.

• The fit is able to constrain the

nuisance parameter which describe the

model uncertainty.
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Conclusion

We discussed how to incorporate different systematics in different ways into the

Likelihood. However, what was presented are recipes. Choosing the right recipe for

your problem is part of the work.

• It depends on the complexity of your problem. Bin-wise systematics can explode

for higher dimensions, e.g. 2D templates.

• It depends on what information you want to have access to post-fit, e.g. do you

want to see the pulls per bin or per error source?

• The presented methods are not an exhaustive list of methods, but can be applied

in many instances.
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Backup
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Including Bin-Wise Systematic Uncertainties

L =
bins∏
i=1

P(ni |νi (θ))×
templates∏

k

N (θ|0,Σk) (13)

is equivalent to

L =
bins∏
i=1

P(ni |νi (θ))×
templates∏

k

N (θ|0,C k) (14)

when we use the transformation

νi =

templates∑
k

fik(θk)ηk (15)

fik →
ηik(1 + θik)∑bins
k ηjk(1 + θjk)

(16)

instead.
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Adding Multiplicative Uncertainties

Adding the uncertainty via

ηk → ηk(1 + εtrackingθk,tracking ), k = sig (17)

is equivalent to adding the uncertainty after the fit to the signal yield:

νsig = µfit ± (σfit ⊕ σtracking) (18)

This works because the fit can not pull on the nuisance parameter because of the

penalty term. It is always cheaper to vary the free parameter νsig.

A useful cross-check is, if the nuisance parameter for the tracking error is 0 after the fit

at the best-fit point.
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