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Method of Maximum Likelihood

The method of maximum Likelihood is a technique for estimating the values of model

parameters given a finite sample of data.
E(H) = H f(Xia 0)7 (1)
i=1

The Likelihood function L is the joint probability distribution of the sample,

, viewing the measured data x; as fixed. We
determine the model parameter 8 which maximizes the probability to draw the sample
data by the Likelihood

oL

%6 =
To get the best possible result for the parameter estimation, ideally all information for
the model is encoded into the Likelihood.

0, i=1,...m (2)



Method of Maximum Likelihood

We usually use the negative logarithm of the Likelihood function:
n
—2InL(0) = =2 " Inf(x;,0). (3)
i=1

The reasons are:

e There are only minimizes on the market.
e Calculating the product of many small values is not computational stable.

e The 2 is just convention, but important in the common way to interpret

Likelihood Profiles (more later).



Method of Maximum Likelihood for Templates i

In this talk, we will discuss the method of maximum Likelihood when we use templates
for our model. This is useful, e.g. when we do not have a good parameterization for
the model and we want to rely on the event generator plus detector simulation.

= The probability density function f(x;|6) of our model is approximated by a
histogram with n bins. The content of each bin follows a Poisson distribution P(n;|v;).
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Method of Maximum Likelihood for Templates
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e The Poisson distribution P, the number of measured events n; in bin i and the

number of expected events v; in bin /.

e The expectation v; = Ztemplates fank, where 1 is the total number of expected
events for template k and fj is the fraction of events expected in bin i of
template k.

Nik

e The fractions are defined as fj = —pk—
> 2701 Mjk



A useful tool for developing and testing your fits is the Asimov Data. You substitute
the "recorded data” with a data sample which corresponds your expectation on MC.

e In comparison to a toy sample, your expectations on the fit result are known. This
helps debugging. Toy MC is still a useful test to check your fit e.g. for bias.
e Caveat: You have to round your MC expectation to integer values.
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Fit Result
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Determining Uncertainty on the Fitted Parameter
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e We minimize the Likelihood function £ to determine our model parameter.

So far, we did not include any uncertainties on our fit model.

Uncertainties can arise from different sources:
e Limited statistics for our templates (we can not produce infinite MC).
e Theory uncertainties, e.g. uncertainty on a parameter which is used in the event
generator.
e Uncertainties on tracking efficiency or lepton ID.

In the following we provide for including systematic uncertainties into the
fit.



Adding Systematics



Bin-Wise Uncertainties: MC Statistics i

The limited MC statistics is an uncorrelated uncertainty for each bin (pure statistical
errors are not correlated).

e For each template k, we have a statistical uncertainty a,lf in each bin /.

e The correlation matrix X is diagonal. Yk =W,

To include this uncertainty into the fit, we introduce a vector of nuisance parameters
6= gk, k =1,...,nTemplates and modify our Likelihood function:

bins templates

L=[]Prilvi(@)) x ] N(ilo,x¥) (7)
i=1 k

Let us decompose this ...
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Bin-Wise Uncertainties: MC Statistics ii

bins templates

£=[IPilie)) x T] Nolo,£¥) (8)
i=1 k

e The normal distribution A/(6,]0, X¥) ensures that the
. We need one Normal distribution and
correlation matrix for each template. In general, we can include other constraints,
e.g. a Log-Normal, if the pull is only allowed to be positive.

e 0 =0,,k=1,.. nTemplates (here k=2).

e The expectation value has to be modified by vy — vix(0)
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Bin-Wise Uncertainties: MC Statistics iii

pull due b Qo2 ¥, a5 %0

templates

vi(0) = > fulbi)i
K
Nik(1 + Gixeix)

fi (0k) = —5m
2 (1 + Ojice)

(9)

(10)
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Fit Result
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Determining Uncertainty on the Fitted Parameter
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e No difference between the full Likelihood profile and statistical only.

e We have a lot of MC statistics, so we do not expect and influence here.
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Pulls on Nuisance Parameters

N ¢ Pull on Background Nuisance
i 3= Post-fit Errors
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Bin-Wise Uncertainties: Theory Uncertainty i

Our background model is based on an exponential function: £(A = 2). What if we are
not sure about A, i.e. A =2+ 0.27 We incorporate this uncertainty into our
background template.

e We have a simple model, which only depends on one model parameter.

e To determine the influence on the template, we vary the model parameter and
generate new templates
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Bin-Wise Uncertainties: Theory Uncertainty ii

Each bin has an uncertainty am°de' To determine the total uncertainty from the model

parameters in each bin:
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Diagonalize the covariance matrix,
vary the covariance matrix 4 an
eigenvalue, transform back.

Generate new templates with the up

and down variation.
o; = sign(a; )(lo; | +1o7])/2
This uncertainty is 100% correlated.

The covariance matrix is generated by
__ ~model model
C =o] ® o} .
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Bin-Wise Uncertainties: Theory Uncertainty iii

We already introduced nuisance parameters per bin before. We now simply modify
what we use in the Likelihood for our background template.

e Add up covariance matrices from different sources CPk& = CST;% + C:;l;%el

i __ stat model
® — €ibkg = € pkg T i bkg

Done! We re-run the fit.

Caveat: You have to invert the covariance matrix in the Likelihood. A covariance
matrix with 100% correlation is singular. However, we already added the statistical
uncertainties which are uncorrelated, resolving this issue.
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Fit Result
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Determining Uncertainty on the Fitted Parameter
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e The model uncertainty has an impact on our Likelihood profile (we expect this,

the uncertainty is 10%)
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Pulls on Nuisance Parameters
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e We fit an Asimov sample, no pulls
expected.

e The fit is able to constrain the
nuisance parameter which describe the

model uncertainty.
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Source-Wise Uncertainties: Model Uncertainty i

An to include the uncertainty of our background model
E(x|]A =240.2) is to include it with a single nuisance parameter. If the systematic is
correlated, we can add the systematic uncertainty not bin-wise but source wise.

sources
L—Lx [] N@o,1), (11)

J

with v; — v;(1 + €;0). This introduces a nuisance parameter per source. The
error amplitude has to encode the (anti-)correlation. 100% correlation is implied
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Source-Wise Uncertainties: Model Uncertainty ii

Nuisance per source Nuisance per bin .
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e Post-fit you can check on which e Post-fit you can check on which
error source the fit tries to pull. bin the fit tries to pull.
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Source-Wise Uncertainties: Tracking Uncertainty i

The tracking uncertainty has an impact on the uncertainty of the signal yield. To
include this, we add the tracking uncertainty into the Likelihood by transforming

Nk — nk(l + 6trackingek,t‘racking)7 k = Sig- (12)

e This is a single nuisance parameter in that case.
e We assume it is constant over the range of the measured quantity.

e We can add more than one uncertainty this way:

Nk — M [[oeer@™eS(1 + 10k 1), adding a nuisance parameter for each source.

All done! We re-run the fit.
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Fit Result
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Determining Uncertainty on the Fitted Parameter
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e Now the Likelihood gets even broader, as we introduced an additional systematic
uncertainty.
e For multiplicative uncertainties, the best fit point will be 0 tracking = 0, as it is

always cheaper to vary vsjg than the constraint nuisance parameter.
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Pulls on Nuisance Parameters
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Validating the Fit Model
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Validating the Fit Model i

So far, we used the Asimov sample to develop our fit. This is nice, because we can
compare the result with out expectation. However, it is not sufficient to test our fit for
bias. To validate that our fit is we can draw so-called toy samples

from our expectation.

Draw from a Poisson distribution P(n|vft! ) for each bin.

> expected
e We perform the fit for N, times and check our parameter of interest 1% via
Vsligiysig )
Pull = —fit_—eweected 450 a3ch fit result.

(Vi)

e We can do this with every parameter in the model.

This distribution has to follow a normal distribution with N(0, 1).
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Validating the Fit Model ii

Applying this method to our problem, we find that the fit is stable and unbiased.
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Unleash the Fit on Real Data
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Determining Uncertainty on the Fitted Parameter
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Pulls on Nuisance Parameters
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Conclusion

We discussed how to incorporate different systematics in different ways into the
Likelihood. However, what was presented are recipes.

e It depends on the complexity of your problem. Bin-wise systematics can explode
for higher dimensions, e.g. 2D templates.

e It depends on what information you want to have access to post-fit, e.g. do you
want to see the pulls per bin or per error source?

e The presented methods are an exhaustive list of methods, but can be applied

in many instances.
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Backup
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Including Bin-Wise Systematic Uncertainties

bins templates
c=1]Pmilw) x [ N0, (13)
i=1 k
is equivalent to
bins templates
L=T]Pmilvi®) x ] N(lo,CY) (14)
i=1 k
when we use the transformation
templates
Z fi (O )n (15)
77ik(1 + 0i)

o (1 + Oj)

instead. o



Adding Multiplicative Uncertainties

Adding the uncertainty via
i = g S G e b8 — S (17)
is equivalent to adding the uncertainty after the fit to the signal yield:
Wit = (s 22 (@t @) Gl (18)

This works because the fit can not pull on the nuisance parameter because of the
penalty term. It is always cheaper to vary the free parameter vgjg.

A useful cross-check is, if the nuisance parameter for the tracking error is O after the fit
at the best-fit point.
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