Charm Flavor Tagger - v1.0

Angelo Di Canto, M.B. - Belle II Summer Workshop Iowa State - 08/05/22

Der Wissenschaftsfonds.

- $A_{CP}(D \to f) = \frac{\Gamma(D \to f) \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$
- CPV in charm is expected to be small and challenging to observe
 - effects are suppressed by $\mathcal{O}(V_{cb}V_{ub}/V_{cs}V_{us}) \sim 0.1 \%$
- direct CPV has been established in (LHCb, <u>link</u>):
 - $\Delta A_{CP} = A_{CP}(D^0 \to K^+K^-) A_{CP}(D^0 \to \pi^+\pi^-) = (-0.154 \pm 0.029)\%$
- while observed value is consistent with SM, challenges first principles calculations and raises the question whether the signal is due to NP
- recent measurement from LHCb indicates direct CP violation in $D^0 \rightarrow \pi^+\pi^-$ at 3.8 σ (link)
- particularly interested in complementary channels at Belle II
 - focus on $D^+ \to \pi^+ \pi^0$, $D^0 \to \pi^0 \pi^0$
- isospin sum rule relating all decays will provide further clarification

$$R = \frac{A_{CP}(D^0 \to \pi^+ \pi^-)}{1 + \frac{\tau_{D^0}}{\mathcal{B}_{+-}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^0}} + \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^+}}\right)} + \frac{A_{CP}(D^0 \to \pi^0 \pi^0)}{1 + \frac{\tau_{D^0}}{\mathcal{B}_{00}} \left(\frac{\mathcal{B}_{+-}}{\tau_{D^0}} + \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^+}}\right)} - \frac{A_{CP}(D^+ \to \pi^+ \pi^0)}{1 + \frac{3}{2}\frac{\tau_{D^+}}{\mathcal{B}_{+0}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^0}} + \frac{\mathcal{B}_{+-}}{\tau_{D^0}}\right)}$$

D* Tagging

slow pion: $M(D^{*+}) - M(D^0) \approx 145 \text{ MeV}/c^2$

- main ingredient is to determine the D^0 flavor at time of production
- standard approach: reconstruct strong decay $D^{*+} \rightarrow D^0 \pi_s^+$, where charge of "slow" pion determines flavor
- major drawbacks:
 - inefficient reconstruction of slow=low momentum pion
 - loss in statistics (only ~25% of all charm quarks hadronize into D^*)

- perform flavor tag with information from the rest of the event (ROE)
- ROE : every track and cluster not related to signal decay
- inclusive approach in which single tracks are reconstructed in the ROE and their charge provides the tag
- this approach could
 - compensate loss in statistics of D* tag,
 - reduce combinatorial background (charged mesons)
- inspired by:
 - ROE method for flavor tagging (by Giulia and Giacomo, <u>link</u>)
 - B-flavor tagging algorithms at Belle II (category-based and deeplearning tagger, <u>link</u>)

The Tagger

The tagging principle

The tagging principle

The tagging principle

Samples and Reconstruction

- samples used (light-2205-abys)
 - MC15ri_a
 - charged,mixed,qqbar (1 ab⁻¹)
 - proc13-chunk2 (exp12)
 - 54.6 fb⁻¹
- signal reconstruction of $D^0 \to K^- \pi^+$ cand.:
 - K, π: thetainCDCAcceptance, dr<1cm, |dz|<3cm, globalPID>0.5
 - *D*⁰: 1.78<InvM<1.92, p*>2.0
- ROE reconstruction:
 - all track candidates with: dr<1cm, |dz|<3cm

Step 1: reconstruct ROE candidates for every signal D0 candidate

event_1	D0_cand_1	ROE_cand_1 ROE_cand_2 ROE_cand_3 ROE_cand_4
	D0_cand_2	ROE_cand_1 ROE_cand_2 ROE_cand_3 ROE_cand_4
event_2		

Step 2: split ROE list by candidate charge

event_1	D0_cand_1	ROE_cand_1_p ROE_cand_2_p 	ROE_cand_1_n ROE_cand_2_n
	D0_cand_2	ROE_cand_1_p ROE_cand_2_p 	ROE_cand_1_n ROE_cand_2_n
event_2			

Step 3: rank ROE lists by opening angle (between D⁰ and ROE cand.) and keep first three candidates per charge (6 tracks in total)

event_1	D0_cand_1	ROE_rank_1_p ROE_rank_2_p ROE_rank_3_p	ROE_rank_1_n ROE_rank_2_n ROE_rank_3_n
	D0_cand_2	ROE_rank_1_p ROE_rank_2_p ROE_rank_3_p	ROE_rank_1_n ROE_rank_2_n ROE_rank_3_n
event_2			

Step 4a: assign ROE candidate tracks into tag categories with generator information

tag catogory	requirements			
lag calegory	track hypothesis	allowed parent o	or grandparent	
Kaon tag	K	$D^0, D^+, D^+_s, \Lambda^+_c$	$D^0, D^+, D_s^+, \Lambda_c^+$	
Slow pion (ss)	π	D^{*+}	/	
Slow pion (os)	π	D^{*+}	/	
Muon tag	μ	$D^0, D^+, D^+_s, \Lambda^+_c$	$D^0, D^+, D^+_s, \Lambda^+_c, D^{*+}$	
Electron tag	е	$D^0, D^+, D_s^+, \Lambda_c^+$	$D^0, D^+, D_s^+, \Lambda_c^+, D^{*+}$	
Proton tag	р	$\Lambda_c^+, \Sigma_c^{++}, \Sigma_c^+, \Sigma_c^0, \Sigma_c^{*++}, \Sigma_c^{*+}, \Sigma_c^{*0}, \Xi_c^+, \Xi_c^0$	$\Lambda_c^+, \Sigma_c^{++}, \Sigma_c^+, \Sigma_c^0, \Sigma_c^{*++}, \Sigma_c^{*+}, \Sigma_c^{*0}, \Xi_c^+, \Xi_c^0$	
Generic tag	/	$D^0, D^+, D_s^+, \Lambda_c^+$	$D^0, D^+, D_s^+, \Lambda_c^+$	

Step 4b: check charge correlation and assign ROE tag charge (=q)

if at least one of 6 tracks fulfills this criteria

- use $D^0 \rightarrow K^-\pi^+$ events (340k)
- label events by determining q
 - -1:anti-D⁰ (34%), 1:D⁰ (35%), 0:no tag (31%)
- train on events with |q|>0
- sample size: 240k events (180k for training, 60k for testing)

BDT features

BDT from sklearn library (HistGradientBoostingClassifer)

event variables	#Kaons _{ROE}	
ROE candidate variables	kaonID	
	mRecoil (only for 1± cand.)	for each of the 6 ROE candidates
	∆R(i,D⁰)	

$$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$$

$$\text{kaonID} = \frac{\mathcal{L}_{K}}{\mathcal{L}_{K} + \mathcal{L}_{\pi} + \mathcal{L}_{e} + \mathcal{L}_{\mu} + \mathcal{L}_{p} + \mathcal{L}_{d}}$$

Michel Bertemes - BNL

BDT performance

BDT performance

Evaluation

Tagging metrics and BDT output

tagging efficiency:	$\epsilon_{tag} = \frac{R+W}{R+W+U}$	
mistag fraction:	$\omega = \frac{W}{R+W}$	
dilution:	$r = 1 - 2\omega $	
tagging power:	$\epsilon_{eff} = \epsilon_{tag} (1 - 2\omega)^2$	
R (W), U: rightly (wrongly) tagged, untagged Dº candidates		

Tagging power (MC and data)

|qr|>0.4

Sample (D⁰→К⁻п+)	signal yield	tagging efficiency	mistag fraction	tagging power
MC15	11,700±100	73±1%	11.2±0.4%	44±1%
exp12(proc13)	12,900±100	72±1%	12.5±0.4%	40±1%

- first working version of the Charm Tagger looks promising
- available data set can be increased by 50% w.r.t to only using D* tag
- open tasks:
 - explore different features
 - ► use D⁰→invisible training sample
 - evaluate on different final states

Intermezzo : ranking variable

Michel Bertemes - BNL

How much does it add?

Performance in exp12 data (without D* tag)

Fit P.D.F: Gaussian+bifurcated Gaussian and polynomial 2nd degree

- validate on exp12 data:
 - select events with globalPID>0.9 for D⁰ daughters
 - exclude events from D* tagged sample
 - apply BDT
 - evaluate for sweighted D⁰,
 - signal yield: 7888±89
 - 78.2±1.3% tagging efficiency
 - mistag fraction: 25.0 ± 0.7% (24.1 ± 0.8% and 25.9 ± 0.8% for D⁰, anti-D⁰ resp.)
 - tagging power: 19.6±1.1%

Performance in exp12 data (without D* tag)

Performance in exp12 data (without D* tag)

3.3 Projected precision

The previously obtained statistical uncertainties on the raw asymmetries may now be used to estimate the precision for Belle II to measure direct CP violation in these two channels at different integrated luminosities, under the assumption that they scale with the square root of the luminosity. The results are shown in Table 1 in comparison with results from previous studies.

$\sigma(A_{CP})$	$D^+ \to \pi^+ \pi^0$	$D^0 \to \pi^0 \pi^0$
Belle $(1 \mathrm{ab}^{-1}) [1, 2]$	1.92%	0.64%
Belle II (50ab^{-1}) [3]	0.17%	0.09%
Belle II $(0.190 \mathrm{ab}^{-1})$	3.78%	1.12%
Belle II $(0.5 \mathrm{ab}^{-1}, \mathrm{until} \mathrm{LS1})$	2.33%	0.69%
Belle II $(1 \mathrm{ab}^{-1})$	1.64%	0.49%
Belle II $(5 ab^{-1})$	0.74%	0.22%
Belle II $(10 \mathrm{ab}^{-1})$	0.52%	0.15%
Belle II $(50 \mathrm{ab^{-1}})$	0.23%	0.07%

Table 1: Expected precision for Belle II at different integrated luminosities, in comparison to previous results.