

Probing BSM Physics in $B \rightarrow D^* \ell v$ using Monte Carlo Simulation

Quinn Campagna

arXiv:2206.11283

Introduction

- There are many experimental anomalies that point towards possible NP in B→D^{*}ℓv
- One of these is an anomaly in A^μ_{FB} for B→D^{*}ℓν, indicating possible NP in the μ mode (Bobeth et al., Eur.Phys.J.C 81 (2021) 11, 984)
- There are several experimental analyses that can be done with current and projected data sets to test possible NP scenarios

Observable	SM Prediction	Measurement (WA)	
$R_{D^*}^{ au/\ell}$	0.258 ± 0.005 [12]	$0.295 \pm 0.011 \pm 0.008$ [12]	
$R_D^{ au/\ell}$	0.299 ± 0.003 [12]	$0.340 \pm 0.027 \pm 0.013$ [12]	
$R_{J/\psi}^{ au/\mu}$	0.283 ± 0.048 [13]	$0.71 \pm 0.17 \pm 0.18$ [11]	
$R_{D^*}^{\mu/e}$	~ 1.0	$1.04 \pm 0.05 \pm 0.01 \; [14]$	

Effective Field Theory

- Write down all possible 6-D operators on b quark mass scale
- Can parameterize NP in terms of right and left handed vectors, right and left handed scalars, and tensors
 - \circ Recombine g_{sl} and g_{sR} to get a scalar (g_s) and pseudoscalar (g_p) contribution
- We assume that the electron mode is well described by the SM, so we only consider NP in the μ mode

$$\mathcal{M} = \frac{4G_F V_{cb}}{\sqrt{2}} \left\{ \langle D\pi \,|\, \bar{c}\gamma^{\mu} [(1+g_L)P_L + g_R P_R] b \,|\, \bar{B} \rangle (\bar{\mu}\gamma_{\mu}P_L\nu) + \langle D\pi \,|\, \bar{c}(g_{S_L}P_L + g_{S_R}P_R) b \,|\, \bar{B} \rangle (\bar{\mu}P_L\nu) + g_T \langle D\pi \,|\, \bar{c}\sigma^{\mu\nu}b \,|\, \bar{B} \rangle (\bar{\mu}\sigma_{\mu\nu}P_L\nu) \right\}$$

Differential Decay Distributions

- Ranges of kinematic variables:
 - $\circ \qquad m_{\ell}^{\ 2} \leq q^{2} \leq (m_{_{B}} + m_{_{D}*})^{2}$
 - $\circ \qquad 0 \le \theta_{\mathsf{D}^*,\ell} \le \pi$
 - $\circ \qquad 0 \leq \chi \leq 2\pi$
- Can perform asymmetric integrals over one or more angles to construct observables

Forward-Backward Asymmetry

- A_{FB} is the asymmetry of events with fermions produced in the forward region ($\cos\theta_{\ell} > 0$) vs those produced in the backward region ($\cos\theta_{\ell} < 0$)
- $\Delta A_{FB} = A^{\mu}_{FB} A^{e}_{FB}$
- $A_{_{FB}}$ is heavily dependent on the choice of form factors, but $\Delta A_{_{FB}}$ removes much of this dependence
- We use our MC to to simulate NP scenarios that can produce a measurable deviation from the SM prediction

$$\frac{d^2\Gamma}{dq^2d\cos\theta_\ell} = \frac{d\Gamma}{dq^2} \left(\frac{1}{2} + A_{FB} \,\cos\theta_\ell + \frac{1 - 3\,\tilde{F}_L^\ell}{4} \,\frac{3\,\cos^2\theta_\ell - 1}{2} \right)$$

Asymmetries vs. Δ -Observables

NP Monte Carlo

- In order to simulate NP scenarios, we have developed a new module for the EvtGen Monte Carlo tool
 - EvtGen previously has the SM module only for $B \rightarrow D^* \ell v$
- This module can be found at **github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model**


```
## first argument is cartesian(0) or polar(1) representation of NP coefficients which
## are three consecutive numbers {id, Re(C), Im(C)} or {coeff id, |C|, Arg(C)}
## id==0 \delta C_VL -- left-handed vector coefficient change from SM
## id==1 C_VR -- right-handed vector coefficient
## id==2 C SL -- left-handed scalar coefficient
## id==3 C_SR -- right-handed scalar coefficient
## id==4 C T -- tensor coefficient
Decay BO
## B0 -> D*- e+ nu_e is generated with the Standard Model only
          e+ nu_e BTODSTARLNUNP;
1 D*-
Enddecay
Decay anti-BO
## anti-B0 -> D*+ mu- anti-nu_mu is generated with the addition of New Physics
1 D*+
          m11-
                anti-nu_mu BTODSTARLNUNP 0 0 0.06 0 1 0.075 0 2 0 -0.2 3 0 0.2;
Enddecay
```

End

Choosing NP Scenarios

- Used following constraints:
 - $\circ \qquad \mathsf{BR} = \mathsf{B}(\mathsf{B} \rightarrow \mathsf{D}^* \mu \nu) / \mathsf{B}(\mathsf{B} \rightarrow \mathsf{D}^* \mathsf{e} \nu) = 1 \pm 3\%$
 - $\langle \Delta A_{FB} \rangle = 0.0349 \pm 0.0089$ (from Bobeth et al. analysis of Belle 2019 data)
- Settled on 3 NP scenarios
 - NP1: $g_L = 0.06$, $g_R = 0.075$, $g_P = 0.2i$
 - NP2: $g_L = 0.08$, $g_R = 0.090$, $g_P = 0.6i$
 - NP3: $g_L = 0.07$, $g_R = 0.075$, $g_P = 0$
- In order to satisfy both constraints, must have positive, real g_L and g_R

Correlated Asymmetries

- If there is truly NP, there will be signals in asymmetries other than ΔA_{FB}
- Will always see a $\Delta S_3^{}$ and $\Delta S_5^{}$ in the presence of NP
- S₇ is a true CP-violating asymmetry, and so will only appear in certain scenarios (ie imaginary g_p)
- MC shown for 50 ab⁻¹ data set in q² bins of 0.4 GeV²

Cuts

- For our analysis we have used Belle II specifications for the transverse momenta of the lepton and pion, angular acceptance
 - \circ p_{T,l} > 0.8 GeV
 - \circ p_{T, π} > 0.1 GeV
 - \circ -0.866 < cos θ < 0.956 for all final state particles
- We also advocate a low q² cut of 1.14 GeV² to avoid the large negative value of our angular observables toward the m_l² threshold

Integrated Values

- To date, ΔA_{FB} has been analyzed as an "integrated" quantity (using 1 q² bin that encompasses the entire desired range)
- Theory predictions of central values are given with estimated theoretical uncertainties
- Statistical uncertainties are given from MC simulations of increasing integrated luminosity

Integrated Δ Observables

Coarse-Binned Analysis

- First step to considering q² dependence of angular obeservables
- Bin ranges:
 - \circ 1.14 to 4 GeV²
 - \circ 4 to 8 GeV²
 - \circ 8 to $(m_{B}+m_{D^{*}})^{2}$ GeV²
- With high enough statistics, it will be possible to perform unbinned fits on the angular observables

Conclusions

- There are several indicators of possible NP in the $B \rightarrow D^* \ell v$ mode
- Δ-observables significantly reduce theoretical uncertainty due to form factors compared to straight asymmetries
- We have developed a MC tool that can generate NP in $B \rightarrow D^* \ell v$
- The presence of NP requires simultaneous signals in several correlated observables
- Integrated and coarse q² bin analyses of these correlated observables can indicate NP with both current and projected data sets
- In the future, unbinned analyses can be performed to more accurately determine the q² dependence of the angular observables

Acknowledgements

- This work was supported by the NSF Grant No PHY-191514
- Thanks to Alakabha Datta, Lopamudra Mukherjee, Bhubanjyoti Bhattacharya, Thomas Browder, Alexei Sibidanov, and Shawn Dubey

Backup Slides

Kinematic Distributions

Observables

Observable	Angular Function	NP Dependence	m_{ℓ} suppression order
A_{FB}		${\rm Re}\left[g_Tg_P^*\right]$	$\mathcal{O}(1)$
	$\cos heta_\ell$	$\operatorname{Re}\left[(1+g_L-g_R)(1+g_L+g_R)^*\right]$	
		${ m Re}\left[(1+g_L-g_R)g_P^* ight]$	
		${\rm Re}\left[g_T(1+g_L-g_R)^*\right]$	${\cal O}(m_\ell/\sqrt{q^2})$
		${\rm Re}\left[g_T(1+g_L+g_R)^*\right]$	
		$ 1+g_L-g_R ^2$	${\cal O}(m_\ell^2/q^2)$
		$ g_T ^2$	
S_3	$\sin^2 heta^*\sin^2 heta_\ell\cos 2\chi$	$ 1+g_L+g_R ^2$	
		$ 1+g_L-g_R ^2$	${\cal O}(1), \; {\cal O}(m_\ell^2/q^2)$
		$ g_T ^2$	
S_5	$\sin 2 heta^* \sin heta_\ell \cos \chi$	${\rm Re}\left[g_Tg_P^*\right]$	$\mathcal{O}(1)$
		$ 1+g_L-g_R ^2$	${\cal O}(1), \; {\cal O}(m_\ell^2/q^2)$
		${ m Re}\left[(1+g_L-g_R)g_P^* ight]$	
		${\rm Re}\left[g_T(1+g_L-g_R)^*\right]$	${\cal O}(m_\ell/\sqrt{q^2})$
		${\rm Re}\left[g_T(1+g_L+g_R)^*\right]$	
		$ g_T ^2$	${\cal O}(m_\ell^2/q^2)$
S_7	$\sin 2 heta^* \sin heta_\ell \sin \chi$	$\mathrm{Im}\left[g_{P}g_{T}^{*}\right]$	$\mathcal{O}(1)$
		$egin{array}{lll} & { m Im}\left[(1+g_L+g_R)g_P^* ight] \ & { m Im}\left[(1+g_L-g_R)g_T^* ight] \end{array} & {\cal O}(m_\ell/\sqrt{q^2}) \end{array}$	

Asymmetry Definitions

$$\begin{split} A_{FB}(q^2) &= \left(\frac{d\Gamma}{dq^2}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta_{\ell} \frac{d^2\Gamma}{d\cos\theta_{\ell}dq^2}, \\ S_3(q^2) &= \left(\frac{d\Gamma}{dq^2}\right)^{-1} \left[\int_{0}^{\pi/4} - \int_{\pi/4}^{\pi/2} - \int_{\pi/2}^{3\pi/4} + \int_{\pi/4}^{\pi} + \int_{\pi}^{5\pi/4} - \int_{5\pi/4}^{3\pi/2} - \int_{\pi/4}^{7\pi/4} + \int_{\pi}^{2\pi}\right] d\chi \frac{d^2\Gamma}{dq^2d\chi}, \\ S_5(q^2) &= \left(\frac{d\Gamma}{dq^2}\right)^{-1} \left[\int_{0}^{\pi/2} - \int_{\pi/2}^{\pi} - \int_{\pi}^{3\pi/2} + \int_{3\pi/2}^{2\pi}\right] d\chi \left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta^* \frac{d^3\Gamma}{dq^2d\cos\theta^*d\chi}, \\ S_7(q^2) &= \left(\frac{d\Gamma}{dq^2}\right)^{-1} \left[\int_{0}^{\pi} - \int_{\pi}^{2\pi}\right] d\chi \left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta^* \frac{d^3\Gamma}{dq^2d\cos\theta^*d\chi}. \end{split}$$

