Search for rare and forbidden charm meson decays $D^0 \rightarrow hh^{(\prime)}ll^{(\prime)} \ (h^{(\prime)} = K, \pi; l^{(\prime)} = e, \mu)$

> Belle II summer workshop 2022 Shuaiyan Kang (Iowa State University) August 5th, 2022

Standard model (SM) rare charm meson decay $D \rightarrow h h^{(\prime)} l^+ l^-$

• Short Distance (SD)

• Flavor Changing Neutral Current transition, only occurs at box/penguin diagrams in SM

$$BF_{SD} \sim 10^{-10} - 10^{-9}$$

L. Cappiello et al. J. High Energ. Phys., (04)2013

• Give room for new physics (NP), can influence the BF and angular distributions

• Long Distance (LD)

CLEO Collaboration Phys.Rev.Lett. 76 (1996):3065-3069

Vector Meson Dominance mode (VMD)
 greatly contributes to BF (affects negatively for probing NP)

$$D^0 \to h_1 h_2 \, V^0(l^- l^+); (V^0; \phi, \omega, \rho^0\,)$$

 $BF_{LD}(D^0 \to K^+\pi^- l^+l^-) \sim 10^{-6}$

A. Paul et al. Phys. Rev., D83(2011):114006

Motivation

- Search for new physics through loop-suppressed decay ${\rm D}^0 \to \pi^+\pi^- \ l^+l^- (l=e,\mu)$
 - SM estimation: $BF_{LD} \sim 10 \times 10^{-7}$ L. Cappiello et al. J. High Energ. Phys., (04)2013
 - LHCb observation $D^0 \rightarrow \pi^+\pi^- \mu^+\mu^-$ (2017): (9.64 ± 0.48 ± 0.51 ± 0.97)×10⁻⁷ Phys. Rev. Lett., 119(2017):181805
- New physics models:
 - Minimal Supersymmetric Standard Models (MSSM): $BF_{MSSM}(D^0 \rightarrow \pi^- \pi^+ l^+ l^-) \sim 10 \times 10^{-7}$ S. Fajfer et al. Phys. Rev., D64(2001):114009
 - Leptoquark (LQ): Lepton flavor violation (LFV) $BF_{LQ}(D^0 \rightarrow \pi^- \pi^+ e^{\pm} \mu^{\mp})$ $\lesssim 10^{-7}$ S. Boer and G. Hiller Phys. Rev., D98(2018):035041
- Lepton flavor universality tests
 - i.e. $BF(D^0 \to K^- \pi^+ \mu^+ \mu^-) / BF(D^0 \to K^- \pi^+ e^+ e^-) \simeq 1$ in SM
- Focus on study $D^0 \rightarrow h h l^+ l^-$ in m_{ll} at low/high mass regions using **Belle MC**

Differential branching ratio $d\mathcal{B}(D^0 \to \pi^- \pi^+ \mu^+ \mu^-)/dq^2$. Solid blue line corresponds to SM short-distance prediction including uncertainties. The long dashed purple curve corresponds to BSM short-distance prediction (Wilson Coefficient $C_9 = 1$). The green and red curves are SM long-distance predictions.

Recent Measurements and Searches of $D^0 \rightarrow hh^{(\prime)}ll$

- Babar (2019): Observation of $D^0 \rightarrow K^- \pi^+ e^+ e^-$
- BESIII (2019): Search for $D^0 \rightarrow h h^{(\prime)} e^+ e^-$
- LHCb (2016 2017): Observation of $\mathrm{D}^0 \to h \; h^{(\prime)} \mu^+ \mu^-$

Experiment	$K^-K^+e^+e^-$	$\pi^-\pi^+e^+e^-$	$K^-\pi^+e^+e^-$
Babar (2019)			$\sim 40 \ (\rho^0/\omega)$
BESIII (2019)	< 110	< 70	< 410
	$K^-K^+\mu^+\mu^-$	$\pi^-\pi^+\mu^+\mu^-$	$K^-\pi^+\mu^+\mu^-$
LHCb (2016-2017)	~1.5	~9.6	~42 (ρ ⁰ /ω)

Shuaiyan Kang

Measured BFs and ULs @ 90% CL $[10^{-7}]$

LHCb Collaboration Phys. Rev. Lett., 119(2017):181805 Phys. Lett., B757(2016):558 BES III Collaboration Phys. Rev., D97(2019):072015 BABAR Collaboration Phys. Rev. Lett.,122(2019):081802 $D^{*+} \rightarrow [D^0 \rightarrow hh^{(\prime)} l^+ l^-] \pi^+$ Reconstruction: Data & MC samples

Belle Data & MC samples studied for signal modes:

- Data:
 - Collected @ Υ(4S), Υ(5S) on/off-resonance, Υ(5S) scan[E_{CM}(Υ(4S), Υ(6S)]; in total ~942fb⁻¹ --> ~395M D⁰(D
 ⁰)
 Cross-section
- MC:
 - Generic MC (background study)
 - Total MC samples: ~6x data integrated luminosity
 - Signal MC: run-independent MC, scaled with $\mathcal L$ by experiment

Signal mode BF is measured relative to normalization mode in order to cancel many of the systematic uncertainties

$$D^{*+} \rightarrow [D^0 \rightarrow hh^{(\prime)} \ e^+e^-] \pi^+$$
 Reconstruction

- Candidate selection:
 - D^* tagged D^0 reconstruction: limits combinatorial background of low momentum tracks from B decays
 - Kinematic cuts (in backup)
 - Best candidate selection: select candidate with $\Delta m(m_{D^{*+}} m_{D^0})$ closest to nominal value.
 - $hh^{(\prime)} e^+ e^-$ modes:
 - Photon conversion veto: reconstruct photon conversion
 - D^0 hadronic veto: reconstruct $D^0 \rightarrow K^-\pi^+\pi^+\pi^-, K^+K^-\pi^+\pi^-, 4\pi$
 - Electron bremsstrahlung recovery

Normalization mode $D^{*+} \rightarrow [D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-] \pi^+$ Reconstruction:

$$D^{*+} \rightarrow [D^0 \rightarrow K^- \pi^+ e^+ e^-] \pi^+$$
 Reconstruction: $m_{ee} @ \rho, \omega$ mass region

Signal pdf: Babar Cruijff function¹: Gaussian with different left and right resolutions and tails

Estimated significance (statistical error included only): $\sqrt{-2\Delta \ln \mathcal{L}} \sim 10$, where $\Delta \ln \mathcal{L}$ is the change of maximum log likelihood when fitting only bkg (signal yield 0)

$D^{*+} \rightarrow [D^0 \rightarrow h h e^+ e^-] \pi^+$ Reconstruction: m_{ee} (low/high mass & m_{ϕ})

 $m(D^0)$ Fit to **MC** ($m_{ee} @ m_{\phi}$, BF ~5 times larger)

$$D^{*+} \rightarrow [D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-] \pi^+$$
 Reconstruction: $m_{\mu\mu} @ \rho, \omega$ mass region

Fit function: same as $K^-\pi^+ e^+e^-$ mode

Peaking background $(K + 3\pi)$: from decay $D^0 \to K^-\pi^+\pi^+\pi^-$, where π reconstructed as μ . The reconstructed mass is less than nominal D^0 mass. Background $(K + 3\pi)$ pdf parameters are obtained from fitting truth $D^0 \to K^-\pi^+\pi^+\pi^-$, π recon as μ

$D^{*+} \rightarrow [D^0 \rightarrow h h \mu^+ \mu^-] \pi^+$ Reconstruction: $m_{\mu\mu}$ (low mass)

Background (4 π) pdf parameters are obtained from fitting truth $D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-, \pi$ recon as μ $D^0 \rightarrow hh^{(\prime)} ll$ reconstruction: estimated BF and ULs

• Determine signal mode BF relative to normalization mode:

$$BR(D^0 \to \text{sig}) = \frac{N_{sig}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} \frac{\mathcal{L}_{norm}}{\mathcal{L}_{sig}} BR(D^0 \to \text{norm})$$

Estimated BF and UL @ 90% CL from Belle generic MC and Babar, BESIII measurements $[10^{-7}]$ (values in blue: Babar measurement of $K^-\pi^+ e^+e^-$, error is statistical; BESIII limits)

Modes $D^0 \rightarrow$	$K^-K^+e^+e^-$	$\pi^-\pi^+e^+e^-$	$K^-\pi^+e^+e^-$			
$ ho,\omega$:						
$675 < m_{ll} < 875$	< 3.7	< 12.6	$38.5 \pm 5.5 \ (40 \pm 5)$			
ϕ :						
$875 < m_{ll} < 1050$	-	< 8.9	< 3.8			
Total:	< 9.3	< 41.1	< 140			
			$(m_{ee} \notin m_{(\rho,\omega)})$			
BES III:	< 110	< 70	< 410			

TABLE VIII. Estimated BF [10⁻⁷] (Normalization mode: $K^-\pi^+\pi^-\pi^+$)

- Expect to observe $D^0 \rightarrow K^-\pi^+ e \ e$
- Expect to find evidence for $D^0 \rightarrow K^- \pi^- \mu^+ \mu^-$
- Expect to have an improved ULs for the $D^0 \rightarrow hh^{(\prime)} e^+e^-$ modes

Summary & Next step

- Estimate sensitivity of $D^0 \rightarrow h h l^+ l^-$ from Belle (MC)
 - Expect to give the better sensitivity for the decay $D^0 \rightarrow hh^{(\prime)} e^+ e^-$ ($h = K, \pi$)
 - Expect to have an improved ULs for the $D^0 \rightarrow hh^{(\prime)} e^+e^-$ decay modes compared to Babar and BES III.
 - From previous studies:
 - Expect to observe $D^0 \rightarrow K^-\pi^- e^+e^-$ and confirm the BF results from Babar using Belle data.
 - Expected sensitivity (statistical error included only): ~10 σ
 - Expect to find evidence for $D^0 \rightarrow K^- \pi^- \mu^+ \mu^-$
 - Expected sensitivity (statistical error included only): ~3.5 σ
- Next step
 - Study systematics, test of LFU
 - Update Belle note

Back up: $D^{*+} \rightarrow [D^0 \rightarrow \pi^+\pi^- e^+e^-]\pi^+$ Reconstruction: low & high mass region

- Cuts:
 - Low/ high mass region: low: 0.2 < m(ee) < 0.525, high: m(ee) > 0.525 [GeV/c²] •
 - Optimized cuts: ٠
 - Each track: |d0| < 0.25 cm, |z0| < 4.5 cm
 - Electron selection: eID > 0.9, p(e) > 0.3 GeV/c
 - Pion selection: eID < 0.05, KID < 0.4
 - Signal: treeFit D^{*+} vertex χ^2 probability > 0, $p^*(D^{*+}) > 2.5$ GeV/c, distance to nominal $\Delta m < 0.5$ MeV/c²
 - Photon conversion veto:
 - Photon conversion: vertex χ^2 fit prob > 0; $\theta(ee) < 0.08$ rads or m(ee) < 0.04 GeV/c²
 - Discard signal D^0 candidates if any of the two lepton tracks are used for photon conversion reconstruction

Belle II Summer Workshop 2022

- D⁰ hadronic veto:
 - D^0 hadronic: vertex χ^2 probability > 0, distance to nominal: $m(D^0) < 5 \text{ MeV/c}^2$, $\Delta m < 0.7 \text{MeV/c}^2$
 - Discard signal D^0 candidates if any of the four tracks are used for D^0 hadronic reconstruction
- Best candidate selection: select candidate with Δm closest to nominal value. Multiplicity ~1.01
- Electron bremsstrahlung recovery:
 - Selection: angle between e and γ candidates $\theta(e\gamma) < 5^{\circ}$, accept all γ passed selection

Shuaiyan Kang

- Basf2 module: BelleBremsRecovery
- Yield extraction: 1D unbinned maximum likelihood fit to $m(D^0)$
- Release: *light-2102-nemesis*²

1: candidate-based truth matching

2: Belle MC track smearing, applied to all decay modes

Back up: $D^{*+} \rightarrow [D^0 \rightarrow \pi^- \pi^+ l^+ l^-] \pi^+$ Reconstruction: signal MC $m(D^0) \& \Delta m$ distribution¹⁵

Back up: $D^{*+} \rightarrow [D^0 \rightarrow \pi^- \pi^+ \mu^+ \mu^-] \pi^+$ Reconstruction: $m_{\mu\mu}$ (high mass)

Peaking background (4 π): from decay $D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$, where π reconstructed as μ .

Back up: No. of D^{*+} from charm and B decays

- No. of D^{*+} from charm: ~583M
 - \mathcal{L} (942.442 fb⁻¹) * $\sigma_{c\bar{c}}$ (1.3 nb) * 2 * fragmentation $c \rightarrow D^{*+}$ (0.238)
- No. of D^{*+} from $B\overline{B^0}$: ~77M
 - Total No. of neutral B (771.581 M) * BF($\overline{B^0} \rightarrow D^{*+} e v_e; D^{*+} \mu v_{\mu}$) (10%)

 $D^0 \rightarrow hh^{(\prime)} ll$ reconstruction: estimated ULs

• Determine signal mode BF relative to normalization mode:

$$BR(D^0 \to \text{sig}) = \frac{N_{sig}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} \frac{\mathcal{L}_{norm}}{\mathcal{L}_{sig}} BR(D^0 \to \text{norm})$$

Estimated UL @ 90% CL from Belle generic MC $[10^{-7}]$

TABLE VIII. Estimated upper mints [10] (Normalization mode. A $\pi^+\pi^-\pi^+$)						
Modes $D^0 \rightarrow$	$K^-K^+e^+e^-$	$\pi^-\pi^+e^+e^-$	$K^-\pi^+e^+e^-$	$K^-K^+\mu^+\mu^-$	$\pi^-\pi^+\mu^+\mu^-$	$K^-\pi^+\mu^+\mu^-$
Low mass:						
$200 < m_{ee} < 525, m_{\mu\mu} < 525$	< 4.5	< 19.6	< 16.6	< 25.3	< 44.3	< 33.8
η :				20		
$525 < m_{ll} < 565$	< 1.1	< 2.0	< 3.1	< 3.9	< 11.2	< 6.0
$ ho, \omega$:						
$675 < m_{ll} < 875$	< 3.7	< 12.6		< 9.9	< 29.5	
ϕ :		110.000		20	0102	
$875 < m_{ll} < 1050$	-	< 8.9	< 3.8	-	< 14.2	< 7.4
High mass:	5					
$m_{ll} > 1050$	-	< 30.0	< 119	-	< 36.3	< 141

TADLE VIII Estimated upper limits $[10^{-7}]$ (Normalization mode: $K^{-}\pi^{+}\pi^{-}\pi^{+}$)

 $D^{*+} \rightarrow [D^0 \rightarrow hh^{(\prime)} ll] \pi^+$: BF and upper limit (UL) calculation

Determine signal mode BF relative to ٠ normalization mode:

Profile likelihood method

$$BR(D^{0} \to \text{sig}) = \frac{N_{sig}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} \frac{\mathcal{L}_{norm}}{\mathcal{L}_{sig}} BR(D^{0} \to \text{norm}) \qquad \lambda(\mu) = \frac{L(\mu)}{L(\mu)}$$

 ϵ : reconstruction efficiency N: fitted yield \mathcal{L} : luminosity

$$\lambda(\mu) = rac{L(\mu,\hat{\hat{
u}})}{L(\hat{\mu},\hat{
u})}$$

 μ : parameter of interest ν : other free parameters of fit $L(\hat{\mu}, \hat{\nu})$: likelihood from best fit $L(\mu, \hat{\hat{v}})$: likelihood from best fit with μ fixed

The upper limit on μ can be found by solving

 $-ln\lambda(\mu) = 1.35$ (@ 90% confidence level CL)

$D^{*+} \rightarrow [D^0 \rightarrow \pi^- \pi^+ l^+ l^-] \pi^+$ Reconstruction: negative logarithm of the profile likelihood

21

Back up: $D^{*+} \rightarrow [D^0 \rightarrow hhll] \pi^+$ Reconstruction: selection criteria

TABLE VI. Optimized selection criteria. $(\delta(m_{D^0}) \equiv m_{D^0} - m_{D^0}^{\text{PDG}}, \delta(\Delta m) \equiv \Delta m - \Delta m^{\text{PDG}})$

Modes $D^0 \rightarrow$	$K^-\pi^+e^+e^-$	$K^-K^+e^+e^-$	$\pi^-\pi^+e^+e^-$	$K^-\pi^+\mu^+\mu^-$ K	$K^-K^+\mu^+\mu^-$	$\pi^-\pi^+\mu^+\mu^-$	$K^-\pi^+\pi^-\pi^+$
Ipmpact parameter selection:							
$ d_0 $ [cm]			< 0.25			< 0.25 (0.1)	< 0.25
$ z_0 $ [cm]			< 4.5			< 4.5 (4.0)	< 4.5
K selection:							
$atcPIDBelle(K,\pi)$	> 0.1	> 0.1 (0.2)	-	> 0.	1	-	> 0.1
eIDBelle	< 0.6 (0.2)	< 0.2	-		-		
π selection:							
$atcPIDBelle(K,\pi)$	-		< 0.4		-		
eIDBelle	< 0.6 (0.2)	< 0.2	< 0.05		-		
e selection:							
$p_e \; [\text{GeV} / c \;]$	$> 0.25 \ (0.35)$	> 0.25	> 0.3 (0.25)		-		
eIDBelle	> 0.8	$> 0.8 \ (0.9)$	0.9		-		
μ selection:							
$p_{\mu} \; [\text{GeV} / c \;]$		-		$> 0.5 \ (0.7)$	> ().5	-
muIDBelle		-		> 0.9	97	> 0.95	-
$p^*(D^{*+}) [\operatorname{GeV}/c]$	> 2.4 (2.5)	> 2.4 (2.5)	> 2.5	> 2.2 (2.4)	> 2.4 (2.5)	> 2.2	> 2.4
$P(\chi^2_{D^{*+}})$				> 0			
$\delta(\Delta m) \; [\mathrm{MeV}/c^2 \;]$				< 0.5			
Photon conversion veto:							
$P(\chi^2_{\gamma^*})$		> 0					
θ_{ee} [rads]	< 0.07 (0.06) or	< 0.06 or	< 0.04 (0.08) or				
$m_{ee} \; [\mathrm{GeV} / c^2 \;]$	$< 0.1 \ (0.06)$	$< 0.06 \ (0.04)$	$< 0.06 \ (0.04)$				
D^0 hadronic decay veto:							
$P(\chi^2_{D^{*+}})$		> 0					
$\delta(\Delta m) \; [{\rm MeV}\!/c^2 \;]$	$< 0.4 \ (0.5)$	< 0.5	$< 0.8 \; (0.7)$				
$\delta(m_{D^0}) \; [\mathrm{MeV}\!/c^2 \;]$	< 3	< 5	< 10 (5)				
Best candidate selection:		close	sest to nominal	value of Δm			