Proposed search for a ν_{τ} **-mixing heavy neutrino**

Minakshi Nayak (Tel Aviv University)

Anomalies 2019, IIT Hyderabad July 18, 2019

Heavy Neutral Leptons (N)

- Neutrino oscillation opened a new window in the search for new physics.
- Neutrino masses can be incorporated to SM by introducing RH (Majorana) neutrinos
- Being neutral under the SM, they can have Majorana mass term
- N is mostly the RH neutrino, but small LH component allow it to interact with SM particles
- N in GeV scale as allows to solve some of the outstanding problems of the SM.
 - Origin of the SM neutrino masses (seesaw mechanism)
 - non-baryonic darkmatter
 - baryogenesis

arXiv:hep-ph/0503065

- N are sterile: Interacts with $v_{_{SM}}$ through mixing: N $\leftrightarrow v_{_{SM}}$
- Long lifetime of N: due to small $\rm M_{_N}$ and small mixing

Status of Direct Searches of HNL

<u>Direct Searches of HNL in tau Decays</u> <u>at B-factories</u>

Proposed search of N-mixing with τ at B-factories with $M_N < M_{\tau}$

- Best place to search for τ decay is B-factories
- $\sigma(e^+e^- \rightarrow \tau^+\tau^-) \sim 0.9 \text{ nb.}$
- Belle: $N(e^+e^- \rightarrow \tau^+\tau^-) = 8.8 \times 10^8$
- BaBar: N($e^+e^- \rightarrow \tau^+\tau^-$) = 4.6 x10⁸
- Belle II with 50 ab^{-1} : N($e^+e^- \rightarrow \tau^+\tau^-$) = 4.6 x10¹⁰ by 2027.

SuperKEKB and Belle II

x40 higher instantaneous luminosity than Belle:

- → Double beam current
- Major increase by small beam size "nano-beam" (vertical spot size ~50nm !!)

- With Belle II VXD: large improvement to vertex resolution w.r.t B-Factories
- IP resolution improved by PXD being at radius of 1.4 cm
- Increased tracking volume compared to Belle in both SVD and CDC \Rightarrow ${\sim}30\%$
- Improved PID with better K/π separation relative to Belle.
- Belle II by 2027: 50ab⁻¹ data

Belle II

New interaction region

Sensitivity study at Belle II

- Since $|U_{\tau N}| >> |U_{eN}|$, $|U_{\mu N}|$ and $m_N < m_{\tau}$, N must decay via the neutral-current decay $N \rightarrow v_{\tau} X_2$, mediated by the Z*
- Sensitivity for $|U_{\tau N}|$ from: $N = N_{\tau} \times B(\tau \rightarrow X_1 N) \times B(N \rightarrow v_{\tau} X_2) \times a \times \epsilon$

- HNL production: through decays of $\tau \to X_1 v_{\tau}$ (X_1 restricted here to $\pi^{\pm}, \pi^{\pm} \pi^0$) and v_{τ} mixes with N with mixing $|U_{N\tau}|^2$
- HNL Decays: $N \rightarrow v_{\tau} X_2$ (X₂ restricted to $\mu^+ \mu^-$, $e^+ e^-$)
- Hadronic X_2 avoided due to fragmentation issues
- Using full GEANT4 simulation to study the B-factory sensitivity for the decay chain $\tau \rightarrow NX_1$, $N \rightarrow v_TX_2$.
- Long lifetime of N: $c\tau_N \propto |U_{N\tau}|^{-2} m^{-5}_{N\tau}$

Background Suppression

- Background estimated using Belle II simulated samples
- A rough background suppression achieved by applying simple event-selection criteria:
- Given here for $\tau_{sig} \rightarrow \pi N$, $N \rightarrow \mu \mu \nu_{\tau}$, $\tau_{other} \rightarrow evv$

To remove backgrounds:

- Strict Particle-Identification requirement
- Tag side: 1-track, Signal side: 3-charged tracks
- Impact Parameter Cuts on π^{\pm}, e^{\pm} in x-y plane and z-axis: |d0| < 0.5 cm, |z0| < 2cm
- Vertex probability cut for $N \rightarrow \mu \mu > 0$
- M_{πµµ} < M_τ
- Flight length of N > 10cm (rejects most background from KS decays and material interactions)
- Other discriminating variables summerized in next page:

$\sigma[{\rm nb}]$
0.525
0.525
1.61
0.4
0.38
1.3
0.9

Few powerful shape variables

8

- + 12 unknowns: p^{μ}_{ν}, p^{μ}_{N}, and p^{μ}_{τ}
- 12 **CONSTRAINTS:** p_4 conservation in the τ and N decays (8 constraints), mass of τ and ν_{τ} (2 constraints), and the unit vector from the production point of the X_1 system to that of the X_2 system, which is the direction of the p_3 of N. The last constraint is large flight distance of the N
- Quadratic relation between E_N and P_N leads two solutions for M_N : m_1 and m_2 .
- For signal, either $m_1 \approx m_N$ or $m_2 \approx m_N$
- Background events are spread out uniformly throughout the (m_1, m_2) plane.
- Signal distribution obtained from simulated signals with particular values of m_N and $|V_{\tau N}|^2$ (lifetime τ_N).
- For each point in $(m_N^2, |V_{\tau N}|^2)$ space, the fit gives the signal yield and the local signal significance.
- With final data: Determine signal yield from fit (m1,m2) to sum of signal + background distribution.

- HNL mass with 2-fold ambiguity (smeared with detector resolution)
- 17 background events/ab⁻¹, mostly $\tau^+\tau^-$, before cutting on m1 vs m2

Efficiency vs M_N

Example: $|U_{N\tau}|^2 = 10^{-4}$, $m_N = 1$ GeV $\Rightarrow c\tau_N = 15.4$ meter

- a× ϵ estimated at the Belle II experiment for various $M_{_N}$ and for various values of $|U_{_{TN}}|^2$
- The efficiency plot below is with signal τ decay: $\tau \rightarrow \pi N$, $N \rightarrow \mu \mu v_{\tau}$, other τ decay: $\tau \rightarrow evv$

 $c\tau_{N} \propto |U_{N\tau}|^{-2} m_{N}^{-5}$

Expected Limit on $|U_{N\tau}|$ from B-factories

- N decay occurs inside Belle II tracking volume of r = 1.2 m
- Future Improvement:

Decays occurring inside the muon system, covering r = 2.5 m, can increase the sensitivity to lower values of $|U_{N\tau}|^2$. This requires dedicated muon-system tracking

Conclusion

- We propose a new search for a sterile neutrino N that mixes predominantly with the v_{T} and that has mass $m_{N} < m_{T}$.
- The current best limits, obtained by DELPHI experiment, can be improved upon by current and future B-factories.
- Belle II can have best sensitivity to LLP search in τ decays by making use of their large samples of $e^+ e^- \rightarrow \tau^+ \tau^-$ events
- We use full GEANT4 simulation to study the B-factory sensitivity for the decay chain $\tau \rightarrow NX_1$, $N \rightarrow \nu_{\tau}X_2$.
- Our method exploits the long lifetime of N to greatly suppress background. In addition, kinematic and vertex-based constraints are used to further suppress backgrounds
- Paper: Dib, Helo, Nayak, Neill, Soffer, Zamora-Saa in preparation

THANK YOU!