Linac Polarization KEK Linac

100

Yuhao Peng 2022.06.06

vertical bends ٠

Lcavity ٠

Beam needs to be vertically polarized before it reaches the J-arc section to avoid the depolarization due to the bend, a spin rotator needs to be installed after the beam is generated **University** of Victoria

3

If the beam is vertically polarized at the source, the polarization is maintained at the injection point

	Index	name	key	s(m)	l(m)	REF_TILT_TOT	B_field	floor.y	spin.x	spin.y	spin.
0	3499	BV1UE	Sbend	661.981	1.906	-1.5708	-0.90687	0.070517	-5.656700e-16	0.38464	-9.230700e-0 ⁻
1	3505	BV1DE	Sbend	666.036	1.906	1.5708	-0.90687	0.300000	-4.302700e-16	1.00000	7.612600e-10
2	3538	BV1UE	Sbend	676.670	1.906	-1.5708	-0.90687	0.370520	1.266100e-15	0.38464	-9.230700e-0
3	3544	BV1DE	Sbend	680.726	1.906	1.5708	-0.90687	0.600010	1.398400e-15	1.00000	-1.354100e-1
4	4134	BV2UE	Sbend	1006.619	1.906	-1.5708	-0.91564	0.671210	2.237800e-15	0.37411	-9.273800e-0
5	4139	BV2UE	Sbend	1008.875	1.906	-1.5708	-0.91564	0.910540	2.627600e-15	-0.72008	-6.938900e-0 ⁻
6	4219	BV2DE	Sbend	1052.333	1.906	1.5708	-0.91564	7.312200	2.435100e-15	0.37411	-9.273800e-0 ⁻
7	4224	BV2DE	Sbend	1054.589	1.906	1.5708	-0.91564	7.409500	2.182700e-15	1.00000	-4.510300e-10

The anti-symmetric vertical B field can recover the vertical polarization

6

Wien Filter

beam at the source and keep the beam following the straight trajectory

out the Lorentz force experienced by the electron

If we consider using the Wien filter to vertically polarize the electron

The Wien Filter is a combination of B and E field, using E field to cancel

Spin Motion The equation of spin motion in the Wien Filter is given by: $\frac{d\vec{S}}{ds} = \frac{q}{B} \overrightarrow{S} \times \overrightarrow{\Omega}$ Where $\overrightarrow{\Omega} = (1 + G\gamma)\overrightarrow{B}_{\perp} + (G + \frac{1}{\gamma + 1})\gamma \frac{\overrightarrow{E} \times \overrightarrow{\beta}}{c}$, q = -e for the

electron

 $q\vec{E} + q\vec{v} \times \vec{B} = 0$

The additional constraint on the E field to cancel out the Lorentz force

Spin Rotation The angular speed is given by:

With $E = vB_{\perp}$, it reduces to:

The desired rotation is $\frac{\pi}{2}$ (from longitudinal to vertical), then

Where L is the length of the Wien Filter

$$\mathbf{2} = (1 + G\gamma)B_{\perp} - (G + \frac{1}{\gamma + 1})\gamma \frac{\mathsf{vE}}{c^2}$$

$$\mathbf{P} = \frac{1 + G B_{\perp}}{\gamma B \rho}$$

$$= \frac{\pi}{2} \frac{\gamma B \rho}{(1 + G)L}$$

h Filter

Example of the Wien Filter

For the EIC, the electron energy is 350 keV requiring a 1.5 m long Wien Filter with a B field of 0.00407 T and a E field of 0.98294 MV/m to achieve the 90 degrees spin rotation

Concerns

the 8.5 MeV acceleration stage

- The electron energy is too high when it leaves the RFgun, pc = 8.5 MeV, which requires the large E field when using Wien Filter
- Need to investigate how to implement the Wien Filter before

Vertical Polarization at the IP vs Turn

polarization vs turn

