Upgrading SuperKEKB with a Polarized Electron Beam: Discovery Potential and Proposed Implementation

Swagato Banerjee (University of Louisville) J. Michael Roney (University of Victoria)

On behalf of Belle II & SuperKEKB e- Polarization Upgrade Working Group

Snowmass Rare Processes and Precision Measurements Frontier Spring Meeting

University of Cincinnati, Cincinnati, Ohio, USA (May 16 - May 19, 2022)

Snowmass 2021 White Paper Upgrading SuperKEKB with a Polarized Electron Beam: Discovery Potential and Proposed Implementation

April 13, 2022

pdf available here

Contents

1	Introduction	1
2	Precision Electroweak Program 2.1 Muon Pair A_{LR} 2.2 Tau Pair A_{LR} 2.3 Charm and Beauty A_{LR} 2.3.1 Introduction 2.3.2 Training and evaluation of the model 2.3.3 Fundation	2 5 6 7 7 7 7
	2.3.3 Evaluation 2.3.4 Classification of $c\bar{c}$ 2.3.5 Classification of $b\bar{b}$ 2.3.6 Lepton requirement study 2.3.7 Beauty A_{LR} 2.3.8 Charm A_{LR} 2.4 Bhabha A_{LR}	9 9 9 10 12 13
3	Tau $g-2$	14
4	Tau EDM	17
5	Tau LFV	18
6	QCD: Dynamical mass generation studies with polarized beams	19
7	Polarized Source 7.1 Beam Generation 7.1.1 Cathode Production and Testing 7.2 Linac Transport	21 21 22 22
8	Beam-Beam Effects on Polarization	23

This talk

<u>The electroweak mixing angle (θ_W)</u>

 $\gamma/\mathbf{Z^0}$

Mixing in terms of the weak isospin g and weak hypercharge g'

SuperKEKB/Belle Upgrade: Polarized e- Beam

 $\langle Pol \rangle$ is the average electron beam polarization for the sample under consideration:

$$\langle Pol \rangle = \frac{1}{2} \left[\left(\frac{N_{eR} - N_{eL}}{N_{eR} + N_{eL}} \right)_{\mathbf{R}} - \left(\frac{N_{eR} - N_{eL}}{N_{eR} + N_{eL}} \right)_{\mathbf{L}} \right]$$

Measure:
(for Born-level
s-channel process)
$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f}\right) g_A^e g_V^f \langle P \rangle \propto T_3^f - 2Q_f \sin^2\theta_W$$

Precision electroweak measurements

• Adapted from Fig. 7.4 of *Precision electroweak measurements on the Z resonance*, Phy.Rep.427 (5), 2006 (LEP/SLD).

• Red bars show expected ±1 sigma uncertainty with 20 ab⁻¹ of data at Chiral Belle [placed at arbitrary positions].

Precision electroweak measurements

Fermion	$\left g_{V}^{f} ight $ (Standard Model)	g_V^f (World Average)	$\sigma(g_V^f)$ (Chiral Belle 40ab ⁻¹)
b-quark	-0.3437 ± 0.0001	-0.3220 ± 0.0077	0.0020 (4 x improvement)
c-quark	0.1920 ± 0.0002	0.1873 ± 0.0070	0.0010 (7 x improvement)
Tau	-0.0371 ± 0.0003	-0.0366 ± 0.0010	0.0008
Muon	-0.0371 ± 0.0003	-0.03667 ± 0.0023	0.0005 (4 x improvement)
Electron	-0.0371 ± 0.0003	-0.03816 ± 0.00047	0.0006

Neutral current vector coupling universality

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle P \rangle \propto T_3^f - 2Q_f \sin^2 \theta_W$$

• The ratio $A_{LR}^{f_1}/A_{LR}^{f_2}$ provides a measurement of $g_V^{f_1}/g_V^{f_2}$

- <P> cancels in ratio: uncertainty dominated by statistics
- Avoid hadronization uncertainties in measurement of g_V^b which was significant in extraction from A_{FB}^b at Z-pole
- g_V^b/g_V^c can be measured with stats-limited relative error of 0.3% (with 20ab⁻¹) \rightarrow 14 x more precise than world average
- Most precise tests of universality for all fermions.

Running of $\sin^2 \theta_W(Q^2)$: window to the Dark Sector

Dark blue band shows Q²-dependent shift in $sin^2 \theta_w$ due to 15 GeV parity-violating dark Z

Differences between SM and 2 benchmark scenarios of dark Z

- Adapted from Fig. 3 of H. Davoudiasl, H.S. Lee and W.J. Marciano, Phys.Rev.D 92(5),2015.
- Red bars shows expected ± 1 sigma uncertainty = 0.0002 with 40 ab⁻¹ at Chiral Belle [placed at arbitrary positions].
- Also sensitive to parity violation induced by exchange of heavy particles e.g. a hypothetical TeV-scale Z' boson, which if couples only to lepton will be uniquely produced @ Belle II and not in pp collisions.

Electric and magnetic moments of τ lepton

Charge asymmetry along spin direction: EDM $\neq 0 \Rightarrow$ CP violation SM expectation $\mathcal{O}(10^{-37})$ e.cm far below experimental sensitivity New physics in loops can enhance EDM of τ lepton ~ $\mathcal{O}(10^{-19})$ e.cm

W. Bernreuther et. al. Phys. Lett. B 391, 413 (1997); T. Huang et. al. Phys. Rev. D 55, 1643 (1997).

$$a_\ell = (g_\ell - 2)/2$$

Large deviation in anomalous magnetic moment of muon

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = (251 \pm 59) \times 10^{-11} [4.2\sigma]$$
Expectation from Minimal flavor violation:

$$a_{\tau}^{BSM} \sim a_{\mu}^{BSM} \left(\frac{m_{\tau}}{m_{\mu}}\right)^2 \sim 10^{-6}$$
Current bound in tau ~ $\mathcal{O}(10^{-2})$
Chiral Belle reach ~ $\mathcal{O}(10^{-5})$ with 50ab

+

Effective field theory approach to τ -pair production

Electric dipole moments of τ lepton

Belle; 833 fb-1 data (arXiv:2108.11543 [hep-ex]) $\operatorname{Re}(d_{\tau}) = (-0.62 \pm 0.63) \times 10^{-17} ecm,$ $\operatorname{Im}(d_{\tau}) = (-0.40 \pm 0.32) \times 10^{-17} ecm.$

- 95% confidence intervals $-1.85 \times 10^{-17} < \text{Re}(d_{\tau}) < 0.61 \times 10^{-17} \text{ ecm},$ $-1.03 \times 10^{-17} < \text{Im}(d_{\tau}) < 0.23 \times 10^{-17} \text{ ecm}.$
- Consistent with zero EDM
- Systematic errors similar to statistical
- Dominant systematics: Data-MC mismatch in momentum/angular distributions
- Preliminary studies at Belle II show much better control in agreement between Data-MC
- > After improved control of systematics, extrapolation based on statistical errors only
- > With 50 ab⁻¹ data at Belle II: Re(d₁) ~ 8 x 10⁻¹⁹, Im(d₁) ~ 4 x 10⁻¹⁹
- > Further improvement expected from proposed upgrade of polarized e- beams.

Electric dipole moments of τ lepton

CP violation and electric-dipole-moment at low energy au production with polarized electrons

J. Bernabeu G.A. Gonzalez-Sprinberg J. Vidal

Nucl.Phys.B763:283-292,2007, hep-ph/0610135

 P_{N}^{τ} :polarization of one of the τ 's normal to the scattering plane.

With beam polarization λ :

 $P_N^{\tau} \propto \lambda \gamma \beta^2 \cos \theta_{\tau} \sin \theta_{\tau} \frac{m_{\tau}}{e} \operatorname{Re}(d_{\tau}^{\gamma})$ Angular asymmetries (P $_N^{\tau}$) are proportional to EDM

$$\mathbf{A}_{N}^{\mp} = \frac{\mathbf{\sigma}_{L}^{\mp} - \mathbf{\sigma}_{R}^{\mp}}{\mathbf{\sigma}_{L}^{\mp} + \mathbf{\sigma}_{R}^{\mp}} = \alpha_{\mp} \frac{3\pi\gamma\beta}{8(3-\beta^{2})} \frac{2\mathbf{m}_{\tau}}{e} \operatorname{Re}(\mathbf{d}_{\tau}^{\gamma})$$

One can also measure A for $\tau^{\scriptscriptstyle +} and/or \ \tau^{\scriptscriptstyle -}$

$$\mathbf{ZP}: \quad \mathbf{A}_{\mathsf{N}}^{\mathsf{CP}} \equiv \frac{1}{2} (\mathbf{A}_{\mathsf{N}}^{+} + \mathbf{A}_{\mathsf{N}}^{-})$$

<u>Magnetic dipole moments of τ lepton</u>

Tau anomalous magnetic moment form factor at super B/flavor factories

J. Bernabéu^{a,b}, G.A. González-Sprinberg^c, J. Papavassiliou^{a,b}, J. Vidal^{a,b,*}

Nucl.Phys.B790:160-174,2008

4.1. Transverse asymmetry 4.2. Longitudinal asymmetry To get an observable sensitive to the relevant signal define the azimuthal transverse asymmetry Then, we define the longitudinal asymmetry as as $A_L^{\pm} = \frac{\sigma_{\rm FB}^{\pm}(+)|_{\rm Pol} - \sigma_{\rm FB}^{\pm}(-)|_{\rm Pol}}{\sigma} = \mp \alpha_{\pm} \frac{3}{4(3 - \beta^2)} [|F_1|^2 + 2\,{\rm Re}\{F_2\}],$ $A_T^{\pm} = \frac{\sigma_R^{\pm}|_{\text{Pol}} - \sigma_L^{\pm}|_{\text{Pol}}}{\sigma} = \mp \alpha_{\pm} \frac{3\pi}{8(3 - \beta^2)\nu} [|F_1|^2 + (2 - \beta^2)\gamma^2 \operatorname{Re}\{F_2\}],$ (29)where where $\sigma_{\rm FB}^{\pm}(+)\big|_{\rm Pol} \equiv \int_{0}^{1} d\left(\cos\theta_{\pm}^{*}\right) \frac{d\sigma_{\rm FB}^{S}}{d(\cos\theta_{\pm}^{*})}\Big|_{\rm Pol(e^{-})}$ $\sigma_L^{\pm}|_{\text{Pol}} \equiv \int_{-\pi/2}^{3\pi/2} d\phi_{\pm} \left[\frac{d\sigma^S}{d\phi_{\pm}} \Big|_{\text{Pol}(e^-)} \right]$ $=\pm \operatorname{Br}(\tau^+ \to h^+ \bar{\nu}_{\tau}) \operatorname{Br}(\tau^- \to h^- \nu_{\tau})$ $\times \alpha_{\pm} \frac{(\pi\alpha)^2 \beta}{8s} \frac{1}{\gamma} [|F_1|^2 + (2-\beta^2)\gamma^2 \operatorname{Re} \{F_2\}],$ (30) $\sigma_R^{\pm}|_{\text{Pol}} \equiv \int_{-\pi}^{\pi/2} d\phi_{\pm} \left[\frac{d\sigma^S}{d\phi_{\pm}} \Big|_{\text{Pol}(e^-)} \right] = -\sigma_L^{\pm}|_{\text{Pol}}.$ (31)

 $= \mp \alpha_{\pm} \operatorname{Br} \left(\tau^{+} \to h^{+} \bar{\nu}_{\tau} \right) \operatorname{Br} \left(\tau^{-} \to h^{-} \nu_{\tau} \right) \frac{\pi \alpha^{2}}{4 \epsilon} \beta \left[|F_{1}|^{2} + 2 \operatorname{Re} \{F_{2}\} \right],$ (35)

(34)

$$\sigma_{\rm FB}^{\pm}(-)\big|_{\rm Pol} \equiv \int_{-1}^{-1} d\big(\cos\theta_{\pm}^{*}\big) \frac{d\sigma_{\rm FB}^{S}}{d(\cos\theta_{\pm}^{*})}\Big|_{\rm Pol(e^{-})} = -\sigma_{\rm FB}^{\pm}(+)\big|_{\rm Pol}.$$
(36)

Combining Eq. (29) and Eq. (34) one can determine the real part of $F_2(s)$.

$$\operatorname{Re}\left\{F_{2}(s)\right\} = \mp \frac{8(3-\beta^{2})}{3\pi\gamma\beta^{2}} \frac{1}{\alpha_{\pm}} \left(A_{T}^{\pm} - \frac{\pi}{2\gamma}A_{L}^{\pm}\right).$$

<u>Magnetic dipole moments of τ lepton</u>

Andreas Crivellin, Martin Hoferichter, J. Michael Roney arXiv:2111.10378 [hep-ph]

,		
	s = 0	$s = (10 \mathrm{GeV})^2$
1-loop QED	1161.41	-265.90
e loop	10.92	-2.43
μ loop	1.95	-0.34
2-loop QED (mass independent)	-0.42	-0.24
HVP	3.33	-0.33
EW	0.47	0.47
total	1177.66	-268.77

Contributions to $F_2(s)$ in units of 10 ⁻	0.
---	----

- Detector level systematics cancels in asymmetries between left (right) beams.
- Precision $\approx \mathcal{O}(10^{-5})$ or better expected with 50 ab⁻¹ of data with polarized beam.

Search for lepton flavor violation in τ decays

- Belle II to probe LFV in several channels $\approx \mathcal{O}(10^{-10})$ to $\mathcal{O}(10^{-9})$ with 50 ab⁻¹
- With beam polarization, helicity distributions can suppress backgrounds
- Optimization study shows at least 10% improvement in $\tau \rightarrow \ell \gamma$ sensitivity

• Possible to disentangle helicity structure of LFV in $\tau \rightarrow \ell \ell \ell$ from Dalitz plots

Many more interesting physics explorations

- Left-right beam asymmetry in production of Λ hadron probes mechanism of dynamical mass generation schemes in QCD
- Novel and feasible accelerator hardware developments:

- 1. Low emittance polarized source
- 2. Spin rotators
- 3. Compton Polarimeters

• Tau polarization measures beam polarization with 0.5% accuracy

$$P_{\tau^{-}} = P_e \frac{\cos\theta}{1 + \cos^2\theta} - \frac{8G_F s g_V^{\tau}}{4\sqrt{2}\pi\alpha} \left(g_A^{\tau} \frac{\overrightarrow{|p|}}{p^0} + 2g_A^e \frac{\cos\theta}{1 + \cos^2\theta} \right)$$

Summary and Outlook

- Open up a unique window of Electroweak precision measurements
 - Detector systematics cancels in left-right beam asymmetry
- Neutral current vector coupling universality
 - No other experiment (running or planned) matches sensitivity
- Chiral Belle probes parity violation both at low & high energy:
 - When Dark Z is off-shell and couples more to 3rd generation
 - TeV-scale Z' which couples only to leptons
- Unambiguous signatures of new physics if moments of τ ≠ 0
 Probe EDM to 𝒫(10⁻¹⁹) & (g-2), to 𝒫(10⁻⁵) or better
- Boost sensitivity of searches of LFV in τ decays
 - disentangle helicity structure of LFV
- Proposed upgrade: Chiral Belle with 70% polarized electron beams
 - \circ Compton polarimeters complemented with τ polarization studies