Separation of $\bar{c}c$, $\bar{b}b$ using ML

ALEXANDRE BEAUBIEN, PHD STUDENT
UNIVERSITY OF VICTORIA
THE BELLE II COLLABORATION

2022-06-07

Outline

- 1. Motivation
- 2. Model
- 3. Results

Motivation

We want to be able to seperate $c\overline{c}$ and $b\overline{b}$ events with high efficiency for A_{LR} measurements.

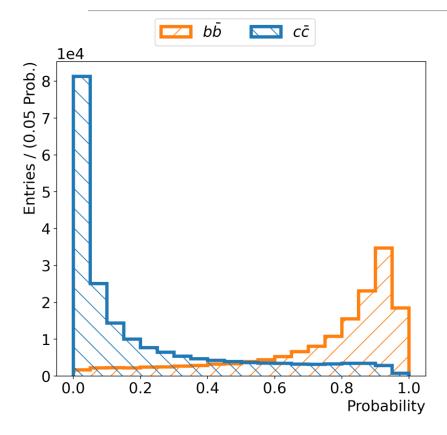
Build ML based classifier (gradient boosted decision tree – GBDT) using **event shape variables.**

Results:

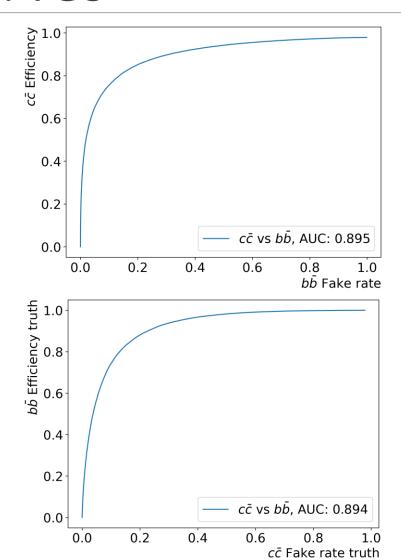
Sufficient for selecting $b\bar{b}$ events, but further selections are needed to select $c\bar{c}$ events.

BDT model

Evaluation variables:


$$b\bar{b} \text{ Efficiency} = \frac{\# \text{ of real } b\bar{b} \text{ predicted as } b\bar{b}}{\# \text{total number of MC generated } b\bar{b}}$$

$$c\bar{c} \text{ Fake rate} = \frac{\# \text{ of real } c\bar{c} \text{ misidentified as } b\bar{b}}{\# \text{total number of MC generated } c\bar{c}}$$


Variable	Feature Importance
foxWolframR2	0.590
thrust	0.184
foxWolframR1	0.081
harmonicMomentThrust0	0.060
thrustAxisCosTheta	0.039
harmonicMomentCollision2	0.020
foxWolframR3	0.010
aplanarity	0.006
harmonicMomentThrust2	0.006
sphericity	0.004

10 most important variables (as defined by the GBDT)

Results ROC curves

Use **ROC** and **AUC** to quantify model quality. Rates are normalized to # of generated particles (MC number).

Results cc

$c\overline{c}$ selection against bb

	Frac	tion
	$c\bar{c}$ efficiency	$b\bar{b}$ fake rate
	0.102	0.000
	0.201	0.002
	0.301	0.005
	0.402	0.010
	0.500	0.020
	0.599	0.037
	0.700	0.069
	0.800	0.138
	0.900	0.311
	0.979	0.998
	·	

Events	$per nb^{-1}$
$c\bar{c}$	$b \overline{b}$
0.133	0.000
0.261	0.002
0.391	0.006
0.523	0.011
0.650	0.022
0.779	0.041
0.910	0.077
1.040	0.153
1.170	0.345
1.273	1.108

Table 4: Classification of $c\bar{c}$ events against $b\bar{b}$ events. These tables show the results from figure 7a.

⁽a) Efficiency and fake rates. (b) Number of events selected as $c\bar{c}$..

Results bb

$b\overline{b}$ selection against $c\overline{c}$ and uds(tau) background in fraction

		Fracti	on			
Efficiency	Background		Fa	ake Rate	e	
$bar{b}$	Fraction	$c\bar{c}$	$u\bar{u}$	$d\bar{d}$	$sar{s}$	$\tau^+\tau^-$
0.098	0.088	0.003	0.002	0.002	0.002	0.002
0.196	0.091	0.008	0.004	0.004	0.004	0.002
0.301	0.110	0.015	0.008	0.008	0.008	0.003
0.401	0.128	0.024	0.013	0.013	0.014	0.003
0.501	0.153	0.038	0.020	0.020	0.022	0.003
0.599	0.181	0.056	0.029	0.030	0.032	0.004
0.699	0.221	0.083	0.044	0.046	0.050	0.004
0.800	0.281	0.130	0.070	0.073	0.079	0.006
0.900	0.380	0.226	0.124	0.131	0.144	0.014
0.998	0.802	0.979	0.966	0.966	0.941	0.996

Results bb

$b\overline{b}$ selection against $c\overline{c}$ and uds(tau) background in nb

		Events	selected	as $b\bar{b}$ p	er nb ⁻¹	
	$b\bar{b}$	$c\bar{c}$	$u\bar{u}$	$d\bar{d}$	$sar{s}$	$\tau^+\tau^-$
(0.109	0.004	0.003	0.001	0.001	0.002
(0.218	0.010	0.006	0.002	0.002	0.002
(0.334	0.020	0.013	0.003	0.003	0.003
(0.445	0.031	0.021	0.005	0.005	0.003
(0.556	0.049	0.032	0.008	0.008	0.003
(0.665	0.073	0.047	0.012	0.012	0.004
(0.776	0.108	0.071	0.018	0.019	0.004
(0.888	0.169	0.113	0.029	0.030	0.006
(0.999	0.294	0.200	0.052	0.055	0.013
_1	1.108	1.273	1.555	0.386	0.358	0.915

Lepton selection

Include the requirement that the **event must have a lepton**. Muon selection is not optimal. Does reduce the uds contribution. cc and tau not very affected

Fraction							_			Ever	nts per :	nb^{-1}		
	Ν	IC Tru	ıth	h ID Cuts		_		MC Truth			ID Cuts			
Type	μ	e	Total	μ	e	Total		Type	μ	e	Total	μ	e	Total
$bar{b}$	0.26	0.27	0.40	0.33	0.22	0.41		$bar{b}$	0.29	0.30	0.45	0.36	0.24	0.46
$c\bar{c}$	0.13	0.16	0.28	0.25	0.12	0.34		$c\overline{c}$	0.17	0.21	0.36	0.32	0.15	0.44
$u\bar{u}$	0.02	0.06	0.08	0.16	0.05	0.20		$u\bar{u}$	0.04	0.10	0.13	0.25	0.07	0.31
$d\bar{d}$	0.02	0.06	0.08	0.16	0.05	0.20		$d\bar{d}$	0.01	0.02	0.03	0.06	0.02	0.08
$sar{s}$	0.02	0.05	0.07	0.14	0.04	0.17		$s\bar{s}$	0.01	0.02	0.03	0.05	0.01	0.07
$ au^+ au^-$	0.25	0.27	0.47	0.27	0.21	0.45		$\tau^+\tau^-$	0.23	0.24	0.44	0.25	0.20	0.41

⁽a) Fraction of events containing at least one lepton. (b) Number of events containing at least one lepton.

Table 7: Simulation sets containing at least one lepton. The sets are selected using cuts: truth is the number MC generated number of events with leptons. ID cuts uses a cut on the default particle identification tool (>0.95) and on E/p (>0.85 electron).

Lepton selection

Include the requirement that the **event must have a lepton**. Muon selection is not optimal. Does reduce the uds contribution. cc and tau not very affected

			Ever	nts per :	nb^{-1}								
	MC Truth ID Cuts		S		MC Truth				ID Cuts				
Type	μ	e	Total	μ	e	Total	Type	μ	e	Total	μ	e	Total
$bar{b}$	0.26	0.27	0.40	0.33	0.22	0.41	$bar{b}$	0.29	0.30	0.45	0.36	0.24	0.46
$c\bar{c}$	0.13	0.16	0.28	0.25	0.12	0.34	$c\bar{c}$	0.17	0.21	0.36	0.32	0.15	0.44
$u\bar{u}$	0.02	0.06	0.08	0.16	0.05	0.20	$u\bar{u}$	0.04	0.10	0.13	0.25	0.07	0.31
$d\bar{d}$	0.02	0.06	0.08	0.16	0.05	0.20	$d\bar{d}$	0.01	0.02	0.03	0.06	0.02	0.08
$sar{s}$	0.02	0.05	0.07	0.14	0.04	0.17	$sar{s}$	0.01	0.02	0.03	0.05	0.01	0.07
$ au^+ au^-$	0.25	0.27	0.47	0.27	0.21	0.45	$\tau^+\tau^-$	0.23	0.24	0.44	0.25	0.20	0.41

⁽a) Fraction of events containing at least one lepton. (b) Number of events containing at least one lepton.

Table 7: Simulation sets containing at least one lepton. The sets are selected using cuts: truth is the number MC generated number of events with leptons. ID cuts uses a cut on the default particle identification tool (>0.95) and on E/p (>0.85 electron).

Selecting with Kaon

_				Fraction					
		Tri	uth						
Type	μ	e	K	Total	μ	e	K	Total	
$bar{b}$	0.177	0.184	0.409	0.244	0.227	0.145	0.408	0.255	
$c\bar{c}$	0.077	0.095	0.409	0.129	0.147	0.068	0.392	0.155	
$u\bar{u}$	0.008	0.021	0.150	0.022	0.057	0.016	0.159	0.051	
$-d\bar{d}$	0.008	0.020	0.134	0.020	0.053	0.015	0.145	0.047	
$-s\bar{s}$	0.012	0.027	0.290	0.037	0.085	0.021	0.271	0.082	
$\tau^+\tau^-$	0.015	0.017	0.012	0.006	0.018	0.013	0.021	0.010	
Events per nb ⁻¹									
			Ever	nts per n	b^{-1}				
		Trı	Ever	nts per n	$1b^{-1}$	ID C	uts		
Туре	μ	Tru e		nts per n Total	μ μ	ID C	${f cuts} \ K$	Total	
$\frac{\text{Type}}{b\bar{b}}$	μ 0.197		uth					Total 0.283	
	-	e	K	Total	μ	e	K		
$b\bar{b}$	0.197	e 0.204	uth K 0.454	Total 0.271	μ 0.252	e 0.161	K 0.452	0.283	
$\frac{b\bar{b}}{c\bar{c}}$	0.197	e 0.204 0.123	0.454 0.531	Total 0.271 0.168	μ 0.252 0.191	e 0.161 0.088	<i>K</i> 0.452 0.509	0.283	
$ \begin{array}{c c} \hline b\bar{b} \\ \hline c\bar{c} \\ \hline u\bar{u} \\ \hline \end{array} $	0.197 0.100 0.013	e 0.204 0.123 0.034	K 0.454 0.531 0.242	Total 0.271 0.168 0.036	μ 0.252 0.191 0.092	e 0.161 0.088 0.026	K 0.452 0.509 0.256	0.283 0.201 0.083	

Selection that has:

- Either muon or electron
- Kaon

Does help reduce the uds background

EARLY RESULTS

Conclusion

 $c\overline{c}$ and $b\overline{b}$ classification can be achieved with good quality using only event shape variables.

Some additional selections such as: requiring lepton and or kaon in the event are needed to reduce backgrounds usd(tau) in the $c\overline{c}$ selection.

Might need D meson tagging.