

European Research Council Established by the European Commission

Recent results on the dark sector from Belle II

Paul Feichtinger, on behalf of the Belle II Collaboration

PASCOS - 27th International Symposium on Particles, Strings and Cosmology Heidelberg, 26.07.2022

Introduction

- B-factories have unique reach in direkt searches for the light dark sector
 - low mass mediator particles on the MeV-GeV scale
- Recent results from Belle II:
 - Dark Higgsstrahlung
 - \circ Z' \rightarrow invisible
 - TT resonance
 - $\blacksquare \qquad \mathsf{Z}' \to \mathsf{T}\mathsf{T}$
 - $\blacksquare \qquad S \longrightarrow \mathsf{TT}$
 - $\blacksquare \qquad ALP \rightarrow TT$

Dark Sector Candidates, Anomalies, and Search Techniques

Belle II and SuperKEKB

- B-factory located in Tsukuba, Japan
- colliding electrons and positrons at $m_{Y(4S)}$ =10.58 GeV/c²
- collected luminosity from 2019-2022: **424 fb**⁻¹
- peak luminosity world record: **4.7 x 10³⁴ cm**⁻² s⁻¹
- target x50 Belle data (\approx **50ab**⁻¹)

Belle II and SuperKEKB

Belle II detector

- general purpose detector: B and D physics, quarkonium, T-physics, dark sector, ...
- large solid angle coverage (> 90%)
 - well known missing mass and energy
- clean collision environment
- excellent PID
- dedicated low-multiplicity triggers
 - two-track trigger (+ opening angle)
 - three-track trigger
 - \circ E_{ECL}>1 GeV trigger

electron (7GeV)

see talk by Doris Kim on

wednesday (session B)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber (CDC) He(50%):C₂H₆(50%), Small cells, longlever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

Dark Higgsstrahlung: $e^+e^- \rightarrow A' h'$

- U(1)' extension to SM » Phys. Rev. D 79, 115008 (2009)
 - Dark photon A'
 - coupled to SM photon via kinetic mixing parameter ε
 - mass generated via spontaneous symmetry breaking
 - Dark Higgs h'
 - couples with α_{D} to A'

Dark Higgsstrahlung - Analysis

- data
 - 8.34 fb⁻¹ (2019)
- backgrounds
 - $\circ \qquad e^+e^- \rightarrow \mu^+\mu^-(\gamma) \qquad \qquad 79\%$
 - $\begin{array}{ll} \circ & e^+e^- \rightarrow \tau^+\tau^-(\gamma) & 18\% \\ \circ & e^+e^- \rightarrow e^+e^-\mu^+\mu^- & 3\% \end{array}$
- selection
 - $\circ~$ two reconstructed muons, $p_{_{T}}^{}^{\mu\mu}$ > 0.1 GeV/c
 - $\circ \quad \ \ {\rm recoil\ momentum\ in\ the\ ECL\ barrel,\ no\ nearby\ photon}$

observed vields

- cut on helicity angle
- strategy
 - \circ scan for excess in 2D plane of M_{recoil} vs M_{uu}
 - ~9000 rotated elliptical mass windows to test signal hypotheses

Dark Higgsstrahlung - Results

submitted to PRL » <u>ArXiv: 2207.00509</u>

7

Z': the L_{μ} - L_{τ} model

- extension of standard model with a U(1)' group
- gauging $L_{\mu}-L_{\tau}$, the difference of leptonic μ and τ number
- Z' is resulting new massive gauge boson that couples only to μ and τ leptons
- can provide solution for
 - dark matter puzzle (Z' as mediator between SM and DS)
 - (g-2)_µ
 - $\circ \qquad b \mathop{\rightarrow} s\mu\mu, R_{_{K}}, R_{_{K^*}} \text{ anomalies}$

» <u>Altmannshofer et al. JHEP 1612 (2016) 106</u>
 » <u>Shuve et al. PRD 89, 113004 (2014)</u>

- Belle II search for Z' in $\mu^+\mu^-$ final state with
 - \circ Z' \rightarrow invisible (neutrinos / dark matter) -
 - \circ Z' \rightarrow TT

 ${\cal L} = \sum_\ell heta g' ar \ell \gamma^\mu Z'_\mu \ell$

final states with missing energy, $M_{z'} \Leftrightarrow M_{recoil}$

$\textbf{Z'} \rightarrow \textbf{invisible}$ - Analysis

- data
 - 79.7 fb⁻¹ (2019-2020)
- backgrounds
 - $\circ \qquad e^+e^-\!\rightarrow \mu^+\mu^-\!(\gamma)$
 - $\circ \qquad e^+e^- \mathop{\rightarrow} T^+T^-(\gamma)$
 - $\circ \qquad e^+e^- \rightarrow e^+e^-\mu^+\mu^-$
- selection
 - \circ two reconstructed muons, p_T^{µµ} > 0.4 GeV/c
 - \circ recoil momentum in the ECL barrel, no nearby photon

Candidates / (0.5 GeV²/c⁴)

neural network trained to optimize Punzi FOM

» Eur. Phys. J. C 82, 121 (2022)

- strategy
 - template fit in 2D plane of θ_{recoil} vs M^2_{recoil}

$\textbf{Z'} \rightarrow \textbf{invisible - Results}$

• no significant excess above background was observed \rightarrow 90% CL upper limits

excluded fully invisible Z' as explanation for $(g-2)_u$ for 0.8 < $M_{Z'}$ < 5.0 GeV/c²

Z', S, ALP \rightarrow TT - Analysis

- search for a TT resonance in $\mu^+\mu^-T^+T^-$ final states
- data
 - 63.3 fb⁻¹(2019-2020)
- selection
 - 4 tracks: $2\mu + 2 e/\mu/\pi$ (1-prong T decay)
 - \circ M(4-track) < 9.5 GeV/c²
 - \circ 8 neural networks trained for different ranges in M_{recoil}(µµ)

• fit for a signal in M_{recoil} above floating background

 $e^+e^- \rightarrow e^+e^- X_{hadronic}$

Preliminary

signal mass resolution: 1.5 – 30 MeV/c²

300

Z', S, ALP \rightarrow TT - Results

• no significant excess above background was observed \rightarrow 90% CL upper limits

first constraints on S for $M_s > 6.5 \text{ GeV/c}^2$ + first direct constraints for ALP $\rightarrow \tau\tau$

» [1] <u>PRD 95 (2017) 075003</u> » [2] <u>arXiv:2110.10698</u>

Summary

- Belle II recorded 424 fb⁻¹ so far \rightarrow plan to collect 50ab⁻¹ in the next decade
- suitable for light dark sector searches
 - hermetic detector
 - clean collision environment
 - excelled particle identification
 - dedicated low multiplicity triggers
- new results for
 - Dark Higgsstrahlung search
 - $\circ \qquad \mathsf{Z'} \! \to \! \mathsf{invisible \, search}$
 - $\circ \qquad \text{Z', S, ALP} \rightarrow \text{tt search}$
- more to come in the future

Thank you!

backup slides $_{\mathcal{V}}$

$Z' \rightarrow invisible$

- within the L_{μ} - L_{τ} model the Z' can decay invisibly only via neutrinos
- if we allow a hypothetical decay of the Z' to dark matter, the $BF(Z' \rightarrow invisible)$ can be enhanced
- we consider both cases in our search

From KEKB to SuperKEKB

Belle + KEKB (1999-2010)

- peak luminosity: $2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- collected almost 1 ab⁻¹ at different resonances and off-resonances

Belle II + SuperKEKB (first collisions in 2019)

- nanobeam scheme + increased beam current
 → goal is 30 times higher luminosity
- luminosity world record (2.9 \times $10^{34}\,\text{cm}^{-2}\text{s}^{-1})$
- goal: collect 50 ab⁻¹ during lifetime (now: 213 fb⁻¹)
- challenges: dealing with higher machine backgrounds and trigger rates

(LER/HER)	E (GeV)	eta_y^* (mm)	eta_{x}^{*} (cm)	arphi (mrad)	I (A)	$L (cm^{-2}s^{-1})$
KEKB	3.5/8.0	5.9/5.9	120/120	11	1.6/1.2	$2.1 imes10^{34}$
SuperKEKB	4.0/7.0	0.27/0.30	3.2/2.5	41.5	3.6/2.6	$60 imes10^{34}$

Trigger

• + single muon trigger (drift chamber + muon detector)

Dark Higgsstrahlung

- $M_{h'} > M_{A'}: h' \rightarrow A'A' \Rightarrow 6$ charged tracks searches by <u>BaBar (2012)</u> and <u>Belle (2015)</u>
- 2-track trigger
- control samples
 - $\mu\mu\gamma$ $\mu\mu(\gamma)$ background
 - о еµ тт background

systematics

source	uncertainty	target
Pre-selections	2 - 9.1%	BKG & signal
BKG shape	9.3% (region specific)	BKG
C_η cut	1%	BKG
Mass resolution	2.4% (on average)	signal
Eff. Inside windows	2 - 5%	signal
Theory (BR A')	4%	signal

Dark Higgsstrahlung

Dark Higgsstrahlung

$\textbf{Z'} \rightarrow \textbf{invisible}$

- previous searches for $Z' \rightarrow \mu^+\mu^-$ by <u>BaBar</u>, <u>Belle</u>, <u>CMS</u>
- 2-track trigger
- control samples
 - μμγ selection+NN studies (low mass)
 - eµ selection+NN studies (medium + high mass)
 - \circ ee(γ) γ veto studies

systematics

Source	Low mass	Medium mass	High mass
selections	2.7%	6.5%	8.3%
Mass resolution	10%	10%	10%
Background shapes	3.2%	8.6%	25%
Photon veto	34%	5%	5%
luminosity	1%	1%	1%

Z', S, ALP \rightarrow tt

- L_µ-L_T: Z'
 - first search in TT final state
- leptophilic scalar: S
 - \circ partially constraint by BaBar in S $\rightarrow \mu\mu$
 - first search in TT final state
- ALP: a
 - $\circ \quad \text{ assume } C_{_{ee}} = C_{_{\mu\mu}} = C_{_{\tau\tau}} \text{ and } C_{_{\gamma\gamma}} = C_{_{Z\gamma}} = 0$
 - ALP-T coupling unconstrained

Z', S, ALP \rightarrow tt

- control sample
 - 2 π + 2 e/μ/π
- 3-track or single muon trigger

systematics

source	Uncertainty (%)	
trigger	2.7	
Particle ID	3.9-6.2	
Tracking	3.6	
Fit bias	4	
MLP selection	2.8	
Mass resolution	3	
Efficiency interpolation	2.5	
Luminosity	1	
other	1	
Total	8.8-9.9	

Punzi-Net » Eur. Phys. J. C 82, 121 (2022)

Min. detectable cross-section at Luminosity L $\sigma_{\min}(t) = \frac{\frac{b^2}{2} + a\sqrt{B(t)} + \frac{b}{2}\sqrt{b^2 + 4a\sqrt{B(t)} + 4B(t)}}{\varepsilon(t) \cdot L}$ N surviving Signal efficiency background events **NN output True label** $y_i \cdot \hat{y}_i(\boldsymbol{w}, \boldsymbol{b}) \cdot s_{sig}$ $\boldsymbol{\varepsilon}(t) \rightarrow \boldsymbol{\varepsilon}(\boldsymbol{w}, \boldsymbol{b}) = \sum_{\boldsymbol{v}}$ Scaling factor Ngen N generated MC signal events NN output The constants a and b are the number of sigmas $B(t) \rightarrow B(\boldsymbol{w}, \boldsymbol{b}) = \sum (1 - y_i) \cdot \hat{y}_i(\boldsymbol{w}, \boldsymbol{b}) \cdot s_{bkg}^i$ corresponding to one-sided Gaussian tests at some predefined significance level, α and β . Here α is the probability of rejecting H_a when it is true (type I error), and β is the probability of not rejecting H_a when instead H_{cup} is true (type II error). **True Label Scaling factor**

Projection of integrated luminosity delivered by SuperKEKB to Belle II

Target scenario: extrapolation from 2021 run including expected improvements.

Base scenario: conservative extrapolation of SuperKEKB parameters from 2021 run

- We start long shutdown 1 (LS1) from summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement works of machine and detector.
- We resume physics running from Fall 2023.
- A SuperKEKB International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.
- An LS2 for machine improvements could happen on the time frame of 2026-2027