Recent results on B and D decay from Belle II

Doris Yangsoo Kim on behalf of the Belle II collaboration

July 27, 2022

50th International Symposium on Multiparticle Dynamics (PASCOS 2022) Max Planck Institute for Nuclear Physics, Heidelberg, Germany

Contents

- Introduction
- The charm lifetimes
- CKM and CPV (selected topics)
- Rare B decays
- Summary

Belle II Experiment in a Nutshell

- Belle II Plan: collecting 50 ab⁻¹ as e⁺ e⁻ collisions at Upsilon(4S) and nearby
 - About 50 times larger than its predecessor, Belle with 1.05 ab⁻¹
- Upsilon(4S) decays into $B \overline{B}$ meson pairs coherently with no additional fragments.
 - High tagging efficiency of B decays (Belle II ~30% vs LHCb ~5%)
 - Full event reconstruction tagging possible
- Direct detection of neutrals such as γ , π^0 , K_L.
- A hermetic detector:
 - Detection of neutrinos or invisibles as missing energy/momentum.
- Large τ samples: Search for LFV τ decays at $O(10^{-9})$.
 - Detect both e and μ with similar performance.

Belle II Physics Prospects

- Charm decays
- Next precision CKM matrix
 - Semileptonic B decays (CKM elements)
 - Hadronic B decays (angles and CPV)
 - Time dependent CP violation
- τ physics
- Hadron spectroscopy
- Rare decays, FCNC
- New physics

Doris Yangsoo Kim @

PASCOS 2022, July 27, 2022

- Lepton flavor violation
- Dark sector, Long lived particles

articles https://confluence.desy.de/display/BI/Snowmass+2021

Belle II Physics Book by B2TIP (Belle II Theory Interface Platform) PTEP 2019, 123C01

SuperKEKB Luminosity: Current Status

- After the commission phases, Phase III started spring 2019.
- Reclaimed the luminosity record on June 2020! (Previously held by LHC.)
- Spring/summer 2022 run ended June.
 - Current peak luminosity record at $L_{peak} = 4.7 \times 10^{34} cm^{-2} s^{-1}$, the current world record on June 22nd.
 - Current integrated luminosity at $\int L_{recorded} dt = 427.79 \ fb^{-1}.$ (~ Babar, ~ ½ Belle)
- Long shutdown 1 (LS1) started for upgrades (beam pipe, pixel, TOP PMT).

Doris Yangsoo Kim @

PASCOS 2022, July 27, 2022

https://confluence.desy.de/display/BI/Belle+II+Luminosity

THE CHARM LIFETIMES

Charm Particle Lifetime

- Charm particles @ low-energy QCD calculation (non-perturbative and high order correction). The effective models do have uncertainties.
- Measurements of charm lifetimes can test the models.

- At SuperKEKB, $\sigma_{c\bar{c}} \sim \sigma_{b\bar{b}}$. Large charm sample.
- $e^+ e^-$ collision gives clean environment. Less bias.
- Small interaction region and the new Belle II vertex detector give strong constraints and better resolutions.
- A great opportunity to measure the world best charm lifetimes.

Doris Yangsoo

PASCOS 2022, July 27, 2022

Why CKM Matrix?

- Unitary triangle constraints are powerful test of the SM.
 - Precision on α and γ angles are much less than β .
- Predicting rare decays involves $V_{qq'}$. Needed for NP searches.
 - Use semi-leptonic, leptonic decays of mesons.

Doris Yangsoo Kim @ PASCOS 2022, July 27, 2022 Phys. Rev. Lett. 127 (2021), 211801

Full Event Interpretation

Hierachial reconstruction is performed to obtain B (tag) meson exclusively. Then use the Upsilon(4S) constraint to get the B (sig) meson.

- Traditionally, at Upsilon(4s), one B (tag) is reconstructed first. The rest of the event is considered as a signal B. https://arxiv.org/abs/2008.02707
- An improved tool (FEI) is developed based on Boosted Decision Tree.

T. Keck et al., Comput. Softw. Big Sci. 3, 6 (2019)

- MVA based. O(10⁴) decay channels.
- $\epsilon_{had} \approx 0.5\%$ and $\epsilon_{SL} \approx 2\%$

The CKM Matrix elements

- The ~ 3σ tension between inclusive and exclusive measurements in $|V_{cb}|$, $|V_{ub}|$ is still going on.
- Preliminary Belle II results, based on 190/fb samples.

Matrix elem.	Signal B	Other B	Meas.	Ref.
<i>V_{cb}</i>	$B \rightarrow D l \nu$, $(l = e, \mu)$	Untagged	$(38.53 \pm 1.15 (stat. + sys. + theo.))$ × 10 ⁻³	ICHEP 2022
	$B^0 \rightarrow D^* l \nu$, $(l = e, \mu)$	Hadronic	$(38.2 \pm 2.8 (stat. + sys. + theo.))$ × 10 ⁻³	Moriond 2022
<i>V_{ub}</i>	$B^0 \rightarrow \pi l \nu$, $(l = e, \mu)$	Untagged	$(3.54 \pm 0.12 \pm 0.15 \pm 0.16) \times 10^{-3}$	ICHEP 2022
	$B \to \pi e \nu$	hadronic	$(3.88 \pm 0.45(stat. + sys. + theo.))$ × 10 ⁻³	Moriond 2022

Signal Selection of SL modes.

Time Dependent CPV and Mixing

Doris Yangsoo Kim @ PASCOS 2022, July 27, 2022 ICHEP2020, Belle2-TALK-CONF-2022-031

Time Dependent CPV and Mixing

 $sin2\phi_1$ results

$sin2\phi_1$ validation

RARE B DECAYS

Rare B decays: Overview

- FCNC b \rightarrow s transitions are suppressed in the SM. A good are to look for NP.
- The 10 to 30% uncertainty in the SM BR (10⁻⁵ to 10⁻⁷) can be supplemented by ratios, asymmetries, and angular distributions.
- An excellent place to test LFU and LFV.
 - Belle II have similar detector performances between electron and muon.
 - Currently Belle II is statistically limit, but will become competitive with a few /ab.

$B^+ \to K^* ll$

- Current R_{K^*} measurements have a 2-3 σ discrepancies.
- The first Belle II report on $190 fb^{-1}$ sample.
- Background suppressed by BDT, and veto on J/ $\psi,\,\psi(2S)$ mass.
- 2D fit to M_{bc} and delta E
- The current results are statistically limited.

Modes	Belle II	WA
$B \to K^* \mu^+ \mu^-$	$(1.19 \pm 0.31^{+008}_{-0.07}) \times 10^{-6}$	$(1.06 \pm 0.09) \times 10^{-6}$
$B \to K^* e^+ e^-$	$(1.42 \pm 0.48 \pm 0.09) \times 10^{-6}$	$(1.19 \pm 0.20) \times 10^{-6}$
$B \to K^* \ l^+ l^-$	$(1.25 \pm 0.30^{+008}_{-0.07}) \times 10^{-6}$	$(1.05 \pm 0.10) \times 10^{-6}$

$B^+ \rightarrow K^+ \nu \nu$ with Inclusive Tagging

- The Belle II measurement at $63 fb^{-1}$ is comparable to the previous Babar/Belle measurements.
- Next step : 190 fb^{-1} sample, and extra channels (K*, K_S)

Babar	$< 1.6 \times 10^{-5}$ (90% C.L.)	Phys. Rev. D87,112005 (2013)
Belle	$< 1.9 \times 10^{-5}$ (90% C.L.)	Phys. Rev. D96,091101(R) (2017)
Belle II	$< 4.1 \times 10^{-5}$ (90% C.L.)	https://arxiv.org/abs/2105.05754

Doris Yangsoo Kim @ PASCOS 2022, July 27, 2022 PhysRevLett.127.181802

SUMMARY

Summary

- SuperKEKB has achieved $L_{peak} = 4.7 \times 10^{34} cm^{-2} s^{-1}$, the world record on June 22nd.
 - It is a super B factory now.
- Belle II has started producing new results, including a world leading results in charm lifetime.
 - More updates are coming with Phase III data
- Belle II started producing results on many intertesing B physics.
 - Reports at ICHEP 2022, Moriond 2022.
- This is a very exciting time to do flavor physics, looking for physics beyond the Standard Model.

EXTRA

The Belle II Collaboration

Belle II and LHCb

- Belle II and LHCb have different systematics ٠
 - Two experiments are required to establish NP.
 - LHCb: large $b\overline{b}$ cross-section (LHCb 1 fb⁻¹ ~ Belle II 1 ab⁻¹). Good sensitivity and S/N with di-muon modes and charged tracks with a vertex.

LHCb Event Display

Long Lived Particles

 December 2020, FSP Workshop focusing on feasibility studies

https://indico.belle2.org/event/2920/

- Additional displacement vertex trigger is needed to enhance the LLP sensitivities.
- A Snowmass White Paper including a proposal of the Gazelle detector

https://www.snowmass21.org/docs/files/su mmaries/RF/SNOWMASS21-RF6_RF0_Torben_Ferber-020.pdf

KEKB to SuperKEKB: Accomplished

positrons

- Nano beam scheme + Crab waist optics
- Target: vertical beta function β_{γ}^* 5.9 mm (KEKB) to 0.3 mm (SuperKEKB)
- Increase beam currents I_{e^+} ٠
- Increase beam-beam interaction ξ_{ν} ٠

Belle II detector