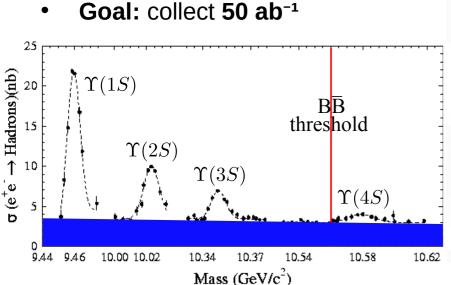
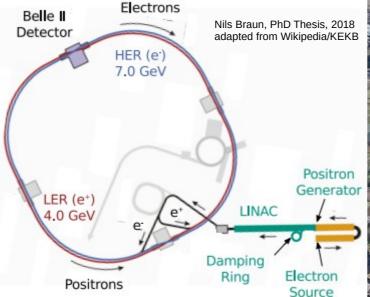


Christian Wessel on behalf of the Belle II collaboration ISMD 2022, Pitlochry, 02.08.2022

christian.wessel@desy.de

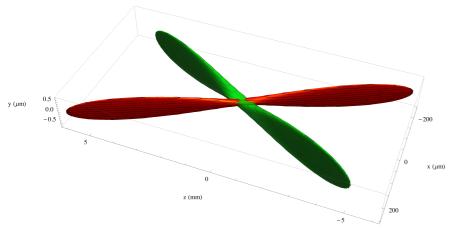

The SuperKEKB collider

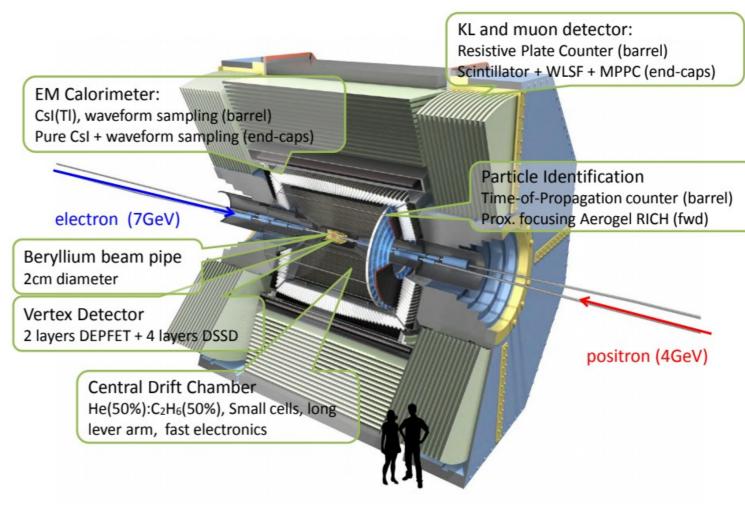

SuperKEKB located at KEK in Tsukuba, Japan

- Asymmetric e⁺e⁻ collider with $\sqrt{s} = m_{\gamma(4S)}$ (10.58 GeV)
- e⁻ @ 7 GeV, e⁺ @ 4 GeV
- Υ(4S) mostly decays into two B-mesons → B-factory

• Target instantaneous luminosity: $\mathscr{L} = 6 \cdot 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

(current WR: 4.7•10³⁴ cm⁻²s⁻¹)

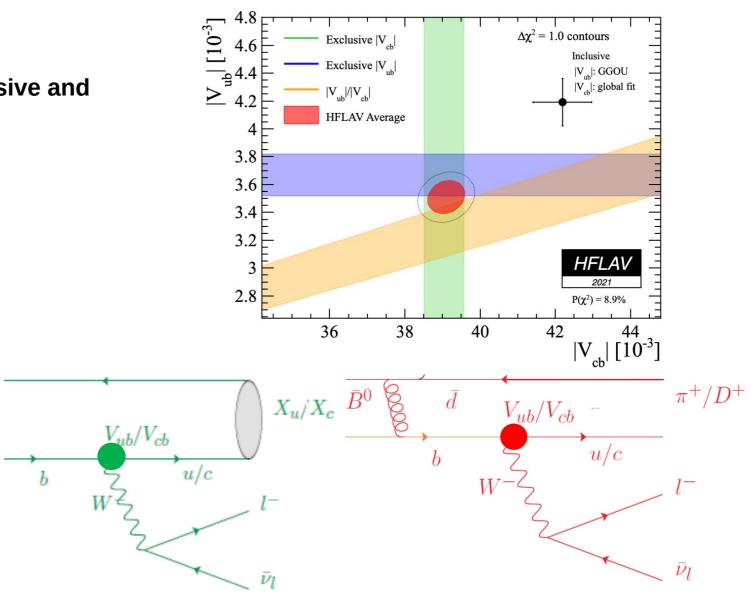




The Belle II experiment

Intensity frontier experiment

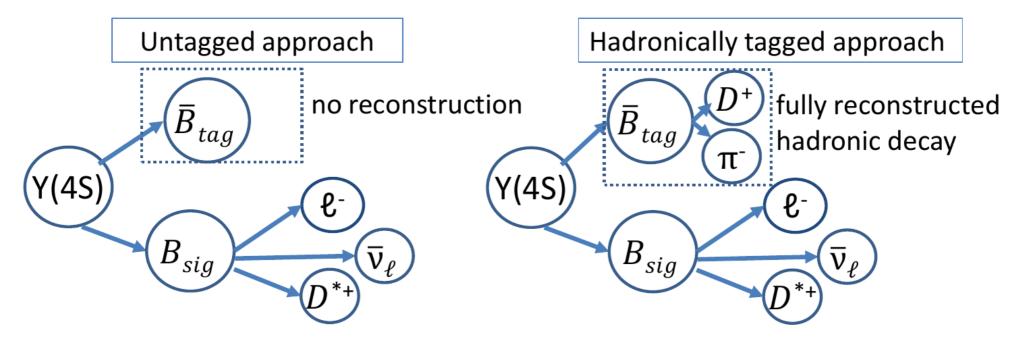
- General purpose 4π detector
- Sub-detectors for
 - Track reconstruction and vertexing
 - Particle identification
 - Energy measurement
 - Superconducting magnet @ 1.5 T


Measurements of $|V_{cb}|$ and $|V_{ub}|$ using semileptonic B decays

The |V_{cb}|-|V_{ub}| puzzle

Longstanding discrepancy between exclusive and inclusive measurements

- For $|V_{cb}| \times 10^{-3}$:
 - Inclusive: 42.19 ± 0.78
 - Exclusive 39.10 ± 0.50
- For $|V_{ub}| \times 10^{-3}$:
 - Inclusive: 4.19 ± 0.12
 - Exclusive: 3.51 ± 0.12
- Constrain CKM unitarity triangle

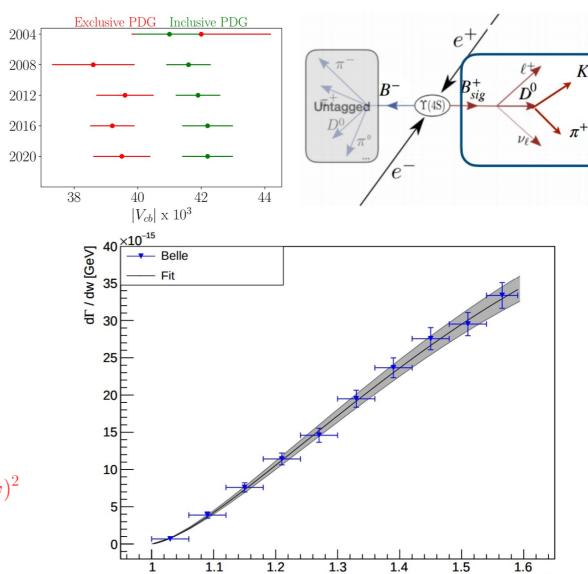

HFLAV, arXiv:2206.07501

Untagged measurements of $|V_{cb}|$ and $|V_{ub}|$

No reconstruction of tag B-meson

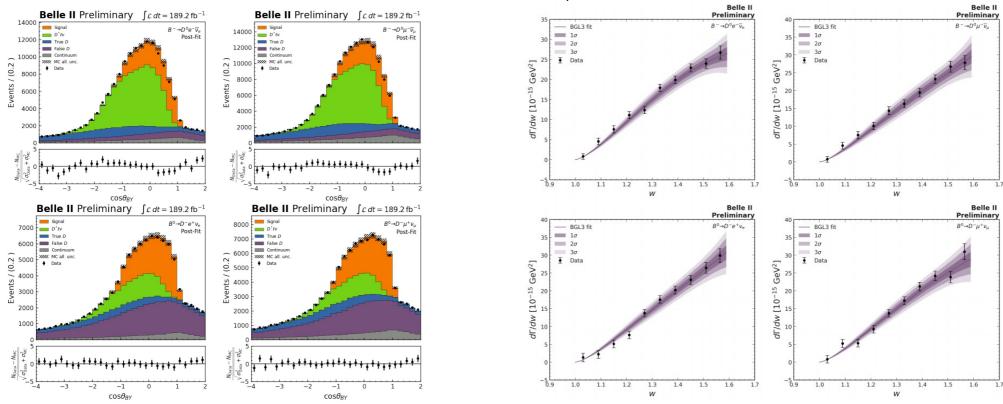
- $|V_{cb}|$ via $B_{sig} \rightarrow D \ell \nu (\ell = e, \mu)$
- $|V_{ub}|$ via $B_{sig}^0 \rightarrow \pi \ell \nu \ (\ell = e, \mu)$
- Challenge: continuum background and charm decays for |V_{ub}| measurement

Untagged measurement of |V_{cb}|


Analysis overview:

- $B^0 \to D^- \ell^+ \nu_{\ell}$ with $D^- \to K^+ \pi^- \pi^-$ and $B^+ \to \overline{D}{}^0 \ell^+ \nu_{\ell}$ with $D^0 \to K^- \pi^+$ (+ cc. in all cases)
- Reconstruct kinematic variable w

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$$


- Fit $cos\theta_{\text{BY}}$ distributions in 10 bins of w to measure differential decay rates
- Fit form factor to partial decay rate spectrum to measure $|V_{ijh}|$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}w}(B \to Dl\nu_l) = \frac{G_F^2}{48\pi^3} (m_b + m_D)^2 m_D^3 \eta_{EW} |V_{cb}|^2 (w^2 - 1)^{3/2} \mathcal{G}(w)^2$$

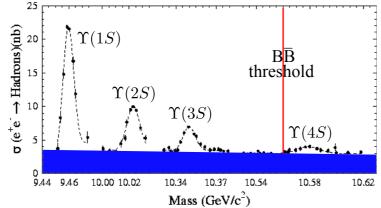
Untagged measurement of |V_{cb}|

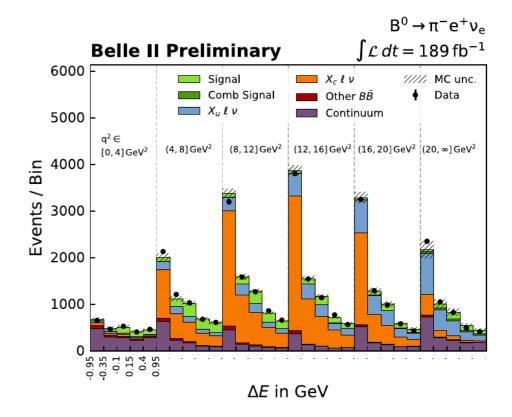
- New result: $|Vcb| = (38.53 \pm 1.15) \times 10^{-3}$ (error: stat. + syst. + theo.)
- Branching ratios:
 - $\quad B^0 \to D^- \, e^+ \, \nu_e^- \colon (1.97 \pm 0.04 \pm 0.08) \, \%, \, B^0 \to D^- \, \mu^+ \, \nu_\mu^- \colon (2.02 \pm 0.04 \pm 0.09) \, \% \quad \text{(PDG: } B^0 \to D^- \, \ell^+ \, \nu_\ell^- \colon (2.24 \pm 0.09) \, \%)$
 - $\quad B^+ \to \overline{D}{}^0 \; e^+ \; \nu_e \\ \vdots \; (2.17 \pm 0.03 \pm 0.10) \; \%, \; B^+ \to \overline{D}{}^0 \; \mu^+ \; \nu_u \\ \vdots \; (2.19 \pm 0.03 \pm 0.14) \; \% \; \; (\text{PDG: } B^+ \to \overline{D}{}^0 \; \ell^+ \; \nu_\ell \\ \vdots \; (2.30 \pm 0.07) \; \%) \\ = 0.03 \pm 0.14 \\ \vdots \; (2.19 \pm 0.03 \pm 0.14) \; \% \; \; (\text{PDG: } B^+ \to \overline{D}{}^0 \; \ell^+ \; \nu_\ell \\ \vdots \; (2.30 \pm 0.07) \; \%) \\ = 0.03 \pm 0.14 \\ \vdots \; (2.19 \pm 0.03 \pm 0.14) \; \% \; \; (\text{PDG: } B^+ \to \overline{D}{}^0 \; \ell^+ \; \nu_\ell \\ \vdots \; (2.30 \pm 0.07) \; \%) \\ = 0.03 \pm 0.14 \\ \vdots \; (2.30 \pm 0.07) \; \% \\ = 0.03 \pm 0.14 \\ \vdots \; (2.30 \pm 0.07) \; \% \\ = 0.03 \pm 0.14 \\ \vdots \; (2.30 \pm 0.07) \; \% \\ = 0.03 \pm 0.14 \\ \vdots \; (2.30 \pm 0.07) \; \% \\ = 0.03 \pm 0.14 \\ \vdots \; (2.30 \pm 0.07) \; \% \\ = 0.03 \pm 0.14 \\ \vdots \; (2.30 \pm 0.07) \; \% \\ = 0.03 \pm 0.07 \\ \vdots \; (2.30 \pm$

Untagged measurement of |V_{ub}|

Analysis overview

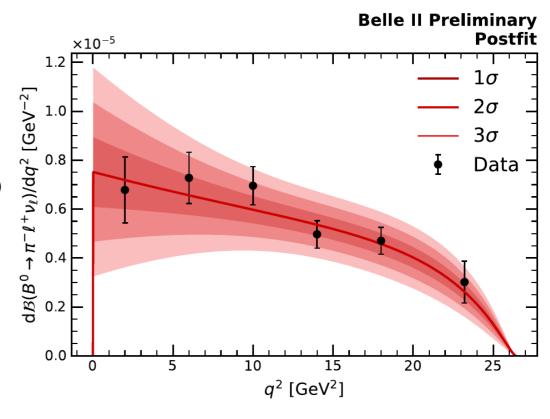
• Determine partial branching fractions in bins of momentum transfer squared (q²) from 2D fit of ΔE and M_{bc} in each q² bin


$$\Delta E = E_B^* - E_{beam}^*$$
 $M_{bc} = \sqrt{E_{beam}^{*2} - |\vec{p}_B^*|^2}$


• Extract $|V_{ub}|$ by fitting the measured partial branching fractions as a function of q^2 , together with theory constraints

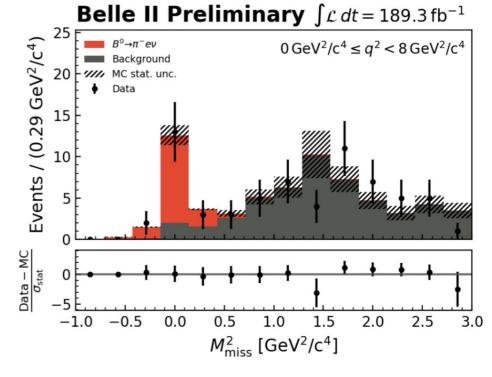
Main challenge

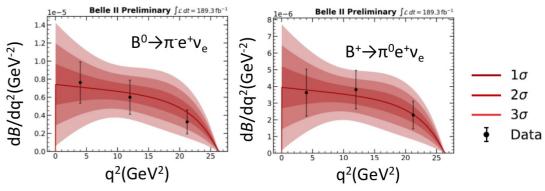
Large backgrounds: Lead to large number of systematic


uncertainties

Untagged measurement of |V_{ub}|

- Fitted differential decay width to extract $|V_{ub}|$ and form factors $\frac{\mathrm{d}\Gamma(B\to\pi l\nu)}{\mathrm{d}q^2} = \frac{G_F^2|V_{ub}|^2}{24\pi^2}|\boldsymbol{p}_\pi|^3|f_+(q^2)|^2$
- Using BCL parametrisation (Phys. Rev. D 79, 013008 (2009)) with lattice QCD calculation by FNAL/MILC (Phys. Rev. D 92, 014024 (2015))
- $|V_{ub}|(B^0 \rightarrow \pi^- \ell^+ \nu_{\ell}) = (3.54 \pm 0.12_{stat} \pm 0.15_{syst} \pm 0.16_{theo}) \times 10^{-3}$
- Consistent with exclusive world average
- $\mathscr{B}(B^0 \to \pi^- \ell^+ \nu_{\ell}) = (1.421 \pm 0.056_{stat} \pm 0.126_{syst}) \times 10^{-4}$


Tagged measurement of |V_{ub}|

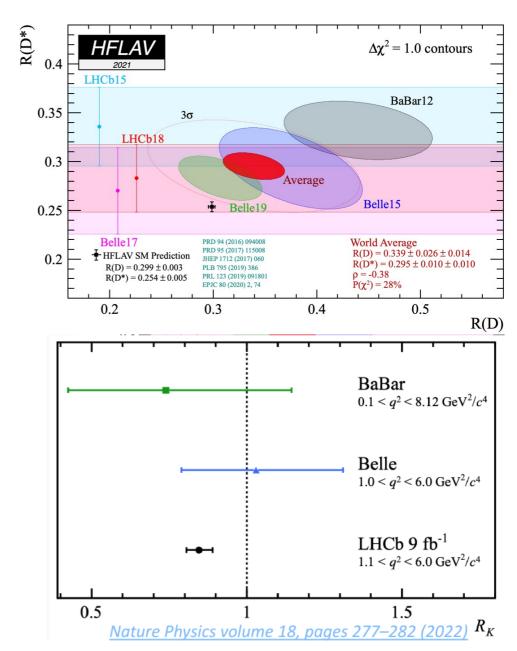

Differential decay width overview

- Using the new and efficient Belle II tagging algorithm:
 Full Event Interpretation (FEI) (arxiv:1807.08680)
- Signal extracted by fitting missing mass squared distribution
- Fitted to extract |V_{ub}| and form factors

$$\frac{d\Gamma(B \to \pi l \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^2} |\boldsymbol{p}_{\pi}|^3 |f_{+}(q^2)|^2$$

- Using BCL parametrisation (Phys. Rev. D 79, 013008 (2009)) with lattice QCD calculation by FNAL/MILC (Phys. Rev. D 92, 014024 (2015))
- $|V_{ub}|(B^0 \to \pi^- \ell^+ \nu_\ell) = (3.88 \pm 0.45) \times 10^{-3}$ (error: stat. + syst. + th
- Consistent with exclusive world average

Lepton flavour universality test using semileptonic B decays

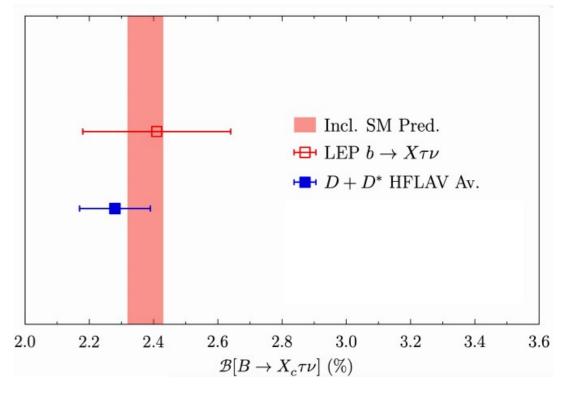

R(D)-R(D*) puzzle

Several measurements challenge lepton flavour universality showing tension with the SM

•
$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} l \nu_{l})}, \ l = e, \mu$$

•
$$R_K = \frac{\mathcal{B}(B \to K\mu^+\mu^-)}{\mathcal{B}(B \to Ke^+e^-)}$$

- And others
- All "anomalies" in direct (not secondary) B decays

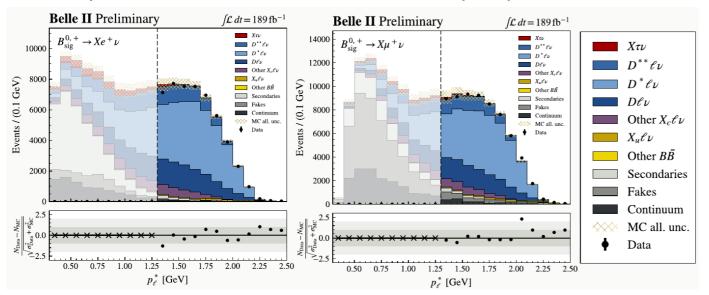


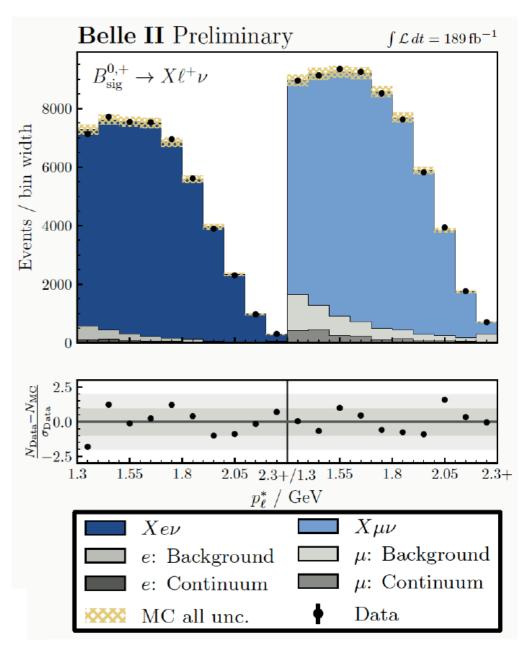
Analysis goal

Complementary tests of LFU via inclusive B decays:

•
$$R(X_{\tau/l}) = \frac{\mathcal{B}(B \to X\tau\nu_{\tau})}{\mathcal{B}(B \to Xl\nu_{l})}$$

- One of the unique and high profile goals of Belle II
- Last measurements at LEP (2001)
- Challenging due to larger background from less constrained X system
- Critically relying on precise modelling of B \rightarrow X ℓ ν , X \rightarrow ... processes
- Probe inclusive B \rightarrow X ℓ ν modeling in data driven way
- Test LFU for light leptons as a first step for the R(X) analysis $R(X_{e/\mu}) = \frac{\mathcal{B}(B \to X e \nu_e)}{\mathcal{B}(B \to X \mu \nu_e)}$

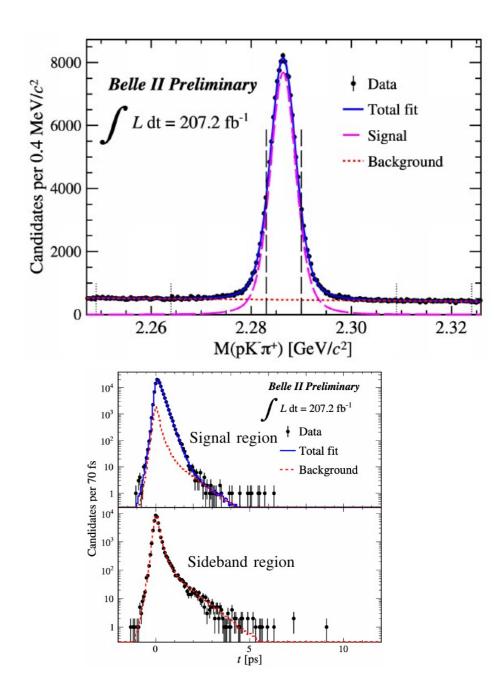

- $R(X_{c,\tau/\ell})_{SM} = 0.223 \pm 0.004$ Phys. Rev. D 92, 054018 (2015)
- $R(X_{e/\mu})_{SM} = 1.006 \pm 0.001$ K. Vos, M. Rahimi, in progress Published exclusive predictions: Eur. Phys. J. C 81, 984 (2021), arXiv:2206.11281, arxiv:2207.03432


Analysis strategy

- High momentum leptons with $p_{\ell}^* > 1.3 \text{ GeV}$
- Signal extraction in binned log-likelihood fit in p*_ℓ,
 backgrounds are constrained in charge sideband

•
$$R(X_{e/\mu}) = \frac{\mathcal{B}(B \to X e \nu_e)}{\mathcal{B}(B \to X \mu \nu_\mu)} = 1.033 \pm 0.010^{\text{stat.}} \pm 0.020^{\text{syst.}}$$

- Most precise LFU based test in semileptonic B decays to date!
- Compatible with SM with value of 1 + O(10^{-3}) within 1.5 σ

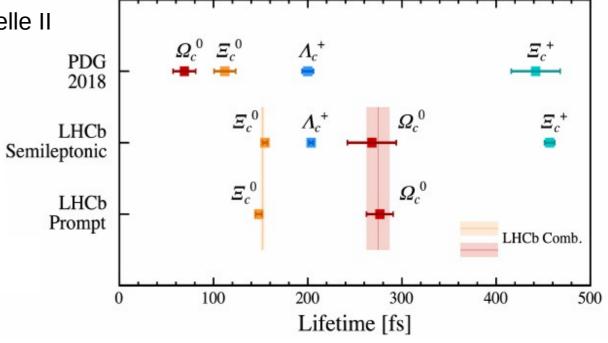


Measurement of the $\Lambda^+_{\ c}$ lifetime

Λ_{c}^{+} lifetime

- Measure Λ^+_{c} lifetime in $\Lambda^+_{c} \to p \ K^- \pi^+$
 - 116k signal events with 7.5 % background in signal region
- Veto $\Xi_c^{0/+} \rightarrow \Lambda_c^+ \pi^{-/0}$
- Resolution modeling and vertex detector alignment are dominant source of systematics
- Result: $\tau(\Lambda_c^+) = 203.2 \pm 0.9$ (stat.) ± 0.8 (syst.) fs
- World's best measurement of the Λ^+_c lifetime
 - Consistent with current world average
 - Benchmark for future baryon lifetime measurements

Measurement of the Ω_c lifetime


Motivation

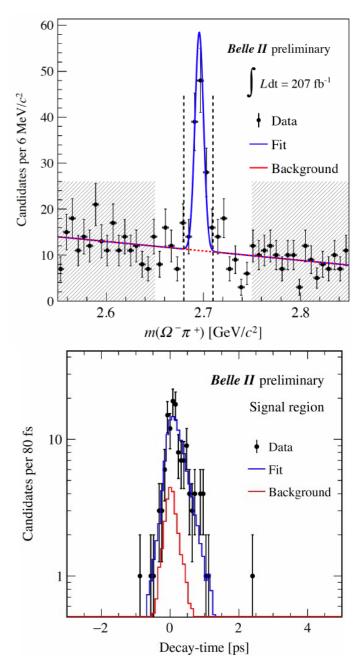
Ω_c was believed to be the shortest lived singly charmed baryon

LHCb measurement recently changed the lifetime hierarchy

$$\tau(\Omega_c^0) < \tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Xi_c^+) \Rightarrow \tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Omega_c^0) < \tau(\Xi_c^+)$$

- No other experimental cofirmation of the LHCb results
 - We provide an independent measurement from Belle II

Results

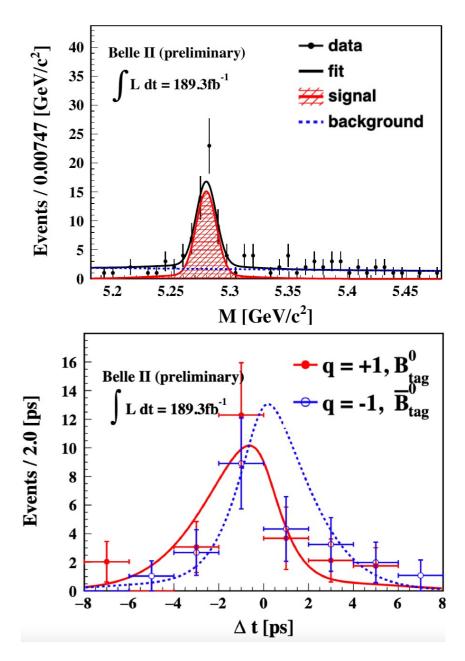

~90 signal candidates are reconstructed in the decay

$$\Omega_c^0 \to \Omega^- \pi^+; \ \Omega^- \to \Lambda^0 K^-; \ \Lambda^0 \to p \pi^-$$

- Background contamination in signal region: 33 %
- Background: zero-lifetime + non-zero lifetime components
- First Belle II lifetime measurement with complex decay topology
 - Two secondary decay vertices
- (Preliminary) Belle II result:

$$\tau(\Omega_c^0) = 243 \pm 48(\text{stat.}) \pm 11(\text{syst.})$$
 fs

- The Ω_c is not the shortest-lived singly charmed baryon
 - Consistent with LHCb result, in tension with pre-LHCb result at 3.4 σ
- Demonstrates the capabilities of the Belle II detector!


CP violation measurement

$\ \, \text{CP violation in B}^0 \ \to \ \, 3 \,\, K^0_{\,\, S} \, decays$

- Unique sensitivity with Belle II
 - Vertexing is challenging
- Signal extraction fit with 3 variables:
 - M_{hc}, invariant mass M, CS classifier
- X⁰_c K_s is rejected
- Main background comes from random combinations of tracks from $e^+e^- \rightarrow u\bar{u}$, $d\bar{d}$, $s\bar{s}$, $c\bar{c}$ events
 - Suppressed with multivariate method
- Analysis validated with $B^+ \rightarrow K^+ K^0_S K^0_S$

$$S_{CP} = -1.86^{+0.91}_{-0.46}$$
 (stat.) ± 0.09 (syst.)

$$A_{CP} = -0.22^{+0.30}_{-0.27} \text{ (stat.)} \pm 0.04 \text{ (syst.)}$$

Conclusion

Conclusion

- Belle II physics program has started successfully
- Exclusive $|V_{xb}|$ measurements compatible with current world average
- Measurement of lepton flavour universality using semileptonic B decays with world leading precision
- Most precise measurement of the Λ^+_c lifetime
- Can confirm the LHCb measurement for the Ω_c lifetime

- Belle II is competitive with ~190 fb⁻¹ by now ~420 fb⁻¹ recorded
 - Nearly as many data as Babar (434 fb⁻¹ on resonance for Babar vs 380 fb⁻¹ on resonance for Belle II)
 - → Many more measurements with world leading precision about to follow in the next years!
- More recent results shown at ICHEP are linked in the backup

Thank you

Backup

ICHEP presentations

Belle II

- T. Koga: Recent Belle II results on the CKM parameters |Vcb| and |Vub|
- H. Junkerkalefeld: Recent Belle II results on semileptonic decays and tests of lepton-flavor universality
- N. Nellikunnummel: Measurements of charm lifetimes at Belle II.
- C. La Licata: Recent Belle II results on decay-time-dependent CP violation
- J. Skorupa: Recent Belle II results on hadronic B decays
- F. Tenchini: Recent tau-lepton results at Belle II
- E. Ganiev: Recent Belle II results on electroweak penguins
- Q. ji: Recent quarkonium results at Belle II
- E. Graziani: Recent dark-sector results at Belle II.

ICHEP presentations

Belle

- K. Smith: Branching fractions and CP asymmetries in B decays through $b \rightarrow c$ processes at Belle
- G. de Marino: Search for baryon-number-violating and lepton-flavor-violating decays at Belle
- M. Prim: New results for semileptonic B decays from Belle
- K. Kang: Radiative and electroweak-penguin B decays at Belle
- A. Sangal: Study of Branching fraction and CP Asymmetry of charm mesons at Belle
- G. Pinna Angioni: Study of charmonia and bottomonia at Belle
- K. Uno: Tau physics at Belle
- J. Chen: Two-Particle Correlations of Hadrons in e+e- Collisions at Belle

Contact

Deutsches Elektronen-Synchrotron DESY **Christian Wessel**

Belle II

christian.wessel@desy.de

www.desy.de