Charm Lifetime Measurements at Belle II

Doris Yangsoo Kim on behalf of the Belle II collaboration

August 25, 2022

The 15th Asia Pacific Physics Conference (APPC 15) South Korea and Online

Belle II Physics Prospects

https://confluence.desy.de/display/BI/Snowmass+2021

Belle II Data

Time Dependent Measurements

- Charm decays
- Next precision **CKM matrix**
 - Semileptonic B decays (CKM elements)
 - Hadronic B decays (angles and CPV)
 - Time dependent CP violation
- τ physics
- Hadron spectroscopy
- Rare decays
- New physics
 - Lepton f
 - Dark sec

- Status and prospects for SuperKEKB/Belle II experiment
 - Keisuke Yoshihara 11:00 11:30 this morning
 - Time-dependent CP violation measurements at Belle II
 - Ming-Chuan Chang 14:45 15:00 after this talk

Introduction and Motivation

- Charm particles require low-energy QCD calculation (non-perturbative and high order corrections). The effective models do have uncertainties.
- Measurements of charm lifetimes can test and improve the models, which are needed for NP searches.
- At SuperKEKB, $\sigma_{c\bar{c}} \sim \sigma_{b\bar{b}}$, which creates large charm samples from continuum.
 - note: for charm lifetime, b decay products are not used.
- $e^+ e^-$ collision gives clean environment, creating less bias in selection and reconstruction.
- Small interaction region and the new Belle II vertex detector give strong constraints and better resolutions.
- A great opportunity to measure the world best charm lifetimes.

A Brief History of Charm Lifetime Measurements

Previously, charm particle lifetimes are dominated by

- D0 and D+
 - FOCUS (photon beam), SELEX (hyperon beam), CLEO (e+e-)
- Charm baryons
 - Dominated by LHCb, but its measurements are relative to D+ lifetime.

Belle II can measure lifetimes absolutely.

4

The Puzzle of Ω_c^0 Lifetime

- The effective models predicted the following lifetime order, $\tau(\Omega_c^0) < \tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Xi_c^+)$
- However, LHCb (2018 and 2021) measured $\tau(\Omega_c^0)$ four times larger than the previous measurements.
- Belle II can confirm or deny the LHCb findings.

Belle II Vertex Detector

Inner most vertex detector consists of

- 1 DEPFET layer (2nd layer will be completed in 2023) and 4 DSSD layers
- Resulting in two times better vertex resolution, improved efficiency for slow pions and Ks's, and better tracking against beam backgrounds w.r.t. Belle.

Alignment is crucial for lifetime measurements.

• Checked thoroughly during analysis.

Proper Decay Time Reconstruction

 D^0 lifetime distribution comparison

Lifetime Fit

- Lifetime fit is applied to the t, σ_t distribution via an un-binned ML method.
 - The signal and sideband regions in invariant mass are fitted at the same time.
 - The background fraction is constrained by a fit to invariant mass distribution.
- The basic probability density function (PDF) used for the fit,

 $f(t,\sigma_t) = f_b \int e^{-t^{\prime}/\tau} R(t-t^{\prime}; b, s \sigma_t) dt^{\prime} S(\sigma_t) + (1-f_b) B(t,\sigma_t)$

- f_b : signal fraction
- $R(t, \sigma_t)$: resolution function, double Gaussian for D^0 , single Gaussian for others.
- b: bias parameter (free in fit), s: scaling parameter (free in fit)
- $S(\sigma_t)$: PDF of σ_t , derived from data as histogram.
- $B(t, \sigma_t)$: background PDF, shape determined from the sideband regions. Assumed zero lifetime and non-zero lifetime components, convoluted by a Gaussian resolution function with free mean and σ_t from s σ_t .

D⁰, **D**⁺ Selection for Lifetime

- Neutral D: $D^{*+} \rightarrow D^0 \pi_s^+$, $D^0 \rightarrow K^- \pi^+$
 - 171k signals, 0.2% background from 72 fb⁻¹
 - Assigned systematics to ~0 background
- Charged D: $D^{*+} \rightarrow D^+ \pi^0$, $D^+ \rightarrow K^- \pi^+ \pi^+$
 - 59k signals, 9% background from 72 fb⁻¹
 - Background: zero-lifetime + two non-zero lifetime components.
- Removed D from B decays by

 $p^{CMS}(D^{*+}) > 2.5 / 2.6 \text{ GeV/c}$ for D^0 / D^+

•	Systematics Sources	$ au(D^0)$ [fs]	$ au({m D}^+)$ [fs]
	Resolution model	0.16	0.39
	Backgrounds	0.24	2.52
	Detector alignment	0.72	1.70
	Momentum scale	0.19	0.48
Doris Ya	Total	0.80	3.10
Aug 25,	2022		

<u>Phys. Rev. Lett. 127 (2021), 211801</u> 10

D⁰, **D**⁺ Lifetime Fit Results

APPC15, Aug 25, 2022

Phys. Rev. Lett. 127 (2021), 211801

11

Λ_{c}^{+} Selection for Lifetime

- A relatively clean sample of $\Lambda_c^+ \rightarrow p K^- \pi^+$
 - 116k signals, 7.5% background from 207.2 fb⁻¹
 - Background: zero-lifetime + two non-zero lifetime components.
- Systematics source

Aug 25, 2022

- Potential bias due to $\Xi_c^{0/+} \rightarrow \Lambda_c^+ \pi^{-/0}$ accounted. Not accounted in the previous Λ_c^+ lifetime measurements.
- Veto applied and corrected for remaining contamination

	Systematics Sources	Uncertainty [fs]
	Ξ_c contamination	0.34
	Resolution model	0.46
	Backgrounds	0.20
	Detector alignment	0.46
	Momentum scale	0.09
Doris Yangsoo Kim	Total	0.77

<u>arXiv: 2206.15227v1</u>, PRL accepted

Λ_{c}^{+} Lifetime Fit Result

Doris Yangsoo Kim @ APPC15, Aug 25, 2022

arXiv: 2206.15227v1, PRL accepted

$\Omega_c^{\ 0}$ Selection for Lifetime

- A sample of $\Omega_c^0 \to \Omega^- \pi^+$, $\Omega^- \to \Lambda^0 K^-$, $\Lambda^0 \to p \pi^-$
 - This channel has two decay vertices reconstructed. First Belle II measurement in such a topology.
 - ~90 signals, 33% background from 207 fb⁻¹
 - Background: zero-lifetime + non-zero lifetime components.
- Systematics source

Systematics Sources	Uncertainty [fs]	
Fit bias	3.4	
Resolution model	6.2	
Backgrounds	8.3	
Detector alignment	1.6	
Momentum scale	0.2	
Input charm masses	0.2	
Total	11.0	

 $\Omega_c^0 \to \Omega^- \pi^+,$

$$\Omega^- \to \Lambda^0 K^-, \quad \Lambda^0 \to p\pi^-$$

Ω_c^0 Fit Result

Doris Yangsoo Kim @ APPC15, Aug 25, 2022 ICHEP 2022 preliminary

Summary

- SuperKEKB has achieved $L_{peak} = 4.7 \times 10^{34} cm^{-2} s^{-1}$, the world record on June 22nd, 2022.
 - It is a super B factory now, also charm/tau lepton factories.
- First results from the charm sector are presented here.
 - The world best D meson lifetimes.
 - The world best Ω^c lifetime.
 - The Belle II preliminary Ω^c lifetime comparable to the LHCb result.
- This is a very exciting time to do flavor physics, and much more to come.

EXTRA

Belle II Experiment in a Nutshell

- HEP experiments have seen huge accomplishments during the last decades.
 - CPV/CKM, discovery of XYZ/tetra/penta particles, discovery of Higgs, etc.
 - Next major theme: New Physics, requiring more precision and larger samples.
- Belle II/SuperKEKB is the upgrade of Belle/KEK.
- Upsilon(4S) decays into $B \overline{B}$ meson pairs, coherently with no additional fragments.
 - Full event reconstruction tagging possible
- Direct detection of neutrals such as γ , π^0 , K_L.
- A hermetic detector:
 - Detection of neutrinos or invisibles as missing energy/momentum.
- Large continuum charm and τ samples in addition to B samples.
 - Detect both e and μ with similar performance.
 - For example, search for LFV τ decays at $O(10^{-9})$ possible.

SuperKEKB Luminosity: Current Status

- After the commission phases, physics runs started spring 2019.
- Reclaimed the luminosity record June 2020! (Previously held by LHC.)
- Spring/summer 2022 run ended June.
 - Peak luminosity at $L_{peak} = 4.7 \times 10^{34} cm^{-2} s^{-1}$, the current world record on June 22nd.
 - Current integrated luminosity at $\int L_{recorded} dt = 424 f b^{-1}$. (~ Babar, ~ ½ Belle)
- Long shutdown 1 (LS1) just started for upgrades (beam pipe, pixel, TOP MPT).

Doris Yangsoo Kim @ APPC15, Aug 25, 2022

https://confluence.desy.de/display/BI/Belle+II+Luminosity

The Belle II Collaboration

Belle II and LHCb

- Belle II and LHCb have different systematics ٠
 - Two experiments are required to establish NP.
 - LHCb: large $b\overline{b}$ cross-section (LHCb 1 fb⁻¹ ~ Belle II 1 ab⁻¹). Good sensitivity and S/N with di-muon modes and charged tracks with a vertex.

LHCb Event Display

KEKB to SuperKEKB: Accomplished

positrons

- Nano beam scheme + Crab waist optics
- Target: vertical beta function β_{γ}^* 5.9 mm (KEKB) to 0.3 mm (SuperKEKB)
- Increase beam currents I_{e^+} ۲
- Increase beam-beam interaction ξ_{ν} •

Belle II detector